19.函數(shù)y=ln(x2-x-2)的單調(diào)遞減區(qū)間為( 。
A.$(-∞,\frac{1}{2})$B.(-∞,-1)C.($\frac{1}{2}$,+∞)D.(-∞,-1)∪(2,+∞)

分析 由對數(shù)式的真數(shù)大于0求出原函數(shù)的定義域,再求出內(nèi)函數(shù)的減區(qū)間,結(jié)合復(fù)合函數(shù)的單調(diào)性得答案.

解答 解:由x2-x-2>0,得x<-1或x>2,
∴函數(shù)f(x)=ln(x2-x-2)的定義域為(-∞,-1)∪(2,+∞),
又內(nèi)層函數(shù)t=x2-x-2的對稱軸方程為x=$\frac{1}{2}$,則內(nèi)函數(shù)在(-∞,-1)上為減函數(shù),在(2,+∞)上為增函數(shù),
且外層函數(shù)對數(shù)函數(shù)y=lnt為定義域內(nèi)的增函數(shù),
故復(fù)合函數(shù)數(shù)f(x)=ln(x2-x-2)的單調(diào)遞減區(qū)間為(-∞,-1).
故選:B.

點評 本題考查復(fù)合函數(shù)的單調(diào)性,以及單調(diào)區(qū)間的求法.對應(yīng)復(fù)合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復(fù)合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進行判斷,判斷的依據(jù)是“同增異減”,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=(x+a)lnx,f′(1)=0,
(1)求f(x)的解析式;
(2)求y=f(x)在(e,f(e))處的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知向量$\overrightarrow{a}$=(sinx,-1),$\overrightarrow$=(2cosx,1).
(Ⅰ)若$\overrightarrow{a}$∥$\overrightarrow$,求tanx的值;
(Ⅱ)若$\overrightarrow{a}$⊥$\overrightarrow$,又x∈[π,2π],求sinx+cosx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線Γ:y=x2及拋物線Γ上的一點A(2,4).
(1)求拋物線Γ在點A處的切線l的方程;
(2)求拋物線Γ及切線l與x軸所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.關(guān)于函數(shù)f(x)=cos2x-2$\sqrt{3}$sinxcosx,下列命題正確的個數(shù)是(  )
①若存在x1,x2有x1-x2=π時,f(x1)=f(x2)成立;
②f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}}$]上是單調(diào)遞增;
③函數(shù)f(x)的圖象關(guān)于點($\frac{π}{12}$,0)成中心對稱圖象;
④將函數(shù)f(x)的圖象向左平移$\frac{5π}{12}$個單位后將與y=2sin2x的圖象重合.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.點P(5,-2,8)關(guān)于面xOy對稱點Q坐標(biāo)為(5,-2,-8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)為奇函數(shù)的是( 。
A.y=x+1B.y=exC.y=x2+xD.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=2lnx-xf′(1),則曲線y=f(x)在x=1處的切線方程是x-y-2=0.

查看答案和解析>>

同步練習(xí)冊答案