【題目】已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當0<x<1時,f(x)=2x(1﹣x),則f(﹣ )+f(1)=( )
A.﹣
B.﹣
C.
D.
【答案】A
【解析】解:函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當0<x<1時,f(x)=2x(1﹣x),
∴f(﹣ )=f(﹣ )=﹣f( )=﹣2 (1﹣ )=﹣ ,
∴f(1)=f(1﹣2)=f(﹣1)=﹣f(1),∴f(1)=0,
則f(﹣ )+f(1)=﹣ +0=﹣ ,
故選:A.
【考點精析】掌握函數(shù)奇偶性的性質(zhì)是解答本題的根本,需要知道在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,F(xiàn)C=4,AE=5,求此幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】.某校從高二年級學生中隨機抽取40名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),[90,100]后得到如圖所示的頻率分布直方圖.
(1)求圖中實數(shù)a的值;
(2)若該校高二年級共有學生640人,試估計該校高二年級期中考試數(shù)學成績不低于60分的學生人數(shù);
(3)若從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,求這兩名學生的數(shù)學成績之差的絕對值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二手車經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如表的對應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求y關(guān)于x的回歸直線方程;(參考公式: = , =y﹣ )
(2)已知每輛該型號汽車的收購價格為w=0.01x3﹣0.09x2﹣1.45x+17.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測x為何值時,小王銷售一輛該型號汽車所獲得的利潤L(x)最大?(利潤=售價﹣收購價)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形, , ,
,點在線段上,且, , 平面.
(1)求證:平面平面;
(2)當四棱錐的體積最大時,求四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)命題p:f(x)= 在區(qū)間(1,+∞)上是減函數(shù);命題q:2x﹣1+2m>0對任意x∈R恒成立.若(¬p)∧q為真,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) , .
(Ⅰ)當a=2時,求f(x)在x∈[1,e2]時的最值(參考數(shù)據(jù):e2≈7.4);
(Ⅱ)若x∈(0,+∞),有f(x)+g(x)≤0恒成立,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知冪函數(shù)滿足.
(1)求函數(shù)的解析式;
(2)若函數(shù),是否存在實數(shù)使得的最小值為0?若存在,求出的值;若不存在,說明理由;
(3)若函數(shù),是否存在實數(shù),使函數(shù)在上的值域為?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com