設(shè)a,b,c都是正數(shù),且滿足
2
a
+
8
b
=1,求使a+b>c恒成立的c的取值范圍.
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:由a,b都是正數(shù),且滿足
2
a
+
8
b
=1,可得a+b=(a+b)(
2
a
+
8
b
)
=10+
2b
a
+
8a
b
,再利用基本不等式的性質(zhì)即可得出.
解答: 解:∵a,b都是正數(shù),且滿足
2
a
+
8
b
=1,
∴a+b=(a+b)(
2
a
+
8
b
)
=10+
2b
a
+
8a
b
≥10+2
2b
a
8a
b
=18,當(dāng)且僅當(dāng)b=2a=12時(shí)取等號.
∵a+b>c恒成立,且c>0.
∴0<c<18.
∴使a+b>c恒成立的c的取值范圍是(0,18).
點(diǎn)評:本題考查了基本不等式的性質(zhì),考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,角A,B,C的對邊分別是a,b,c,若a=6,b=5,cosA=-
4
5

(1)求角B的大;
(2)求邊c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-3|-|x+3|.
(1)作出該函數(shù)的圖象
(2)指出該函數(shù)的遞增、遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|0<x≤2},B={x|x≥a,a>0},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2+a7=66,a3a6=128,求等比數(shù)列的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(2x2+x+1)的定義域是[-1,2],求f(3x-5)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xln(ax)(a>0)
(Ⅰ)設(shè)F(x)=
1
2
(lna)x2+f′(x),討論函數(shù)F(x)的單調(diào)性;
(Ⅱ)過兩點(diǎn)A(x1,f′(x1)),B(x2,f′(x2))(x1<x2)的直線的斜率為k,求證:0<k<
1
x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.設(shè)數(shù)列{an}是公方差為p(p>0,an>0)的等方差數(shù)列,且a1=1,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x+1
x2+8
,求該函數(shù)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案