如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是梯形BC∥AD,∠DAB=90°,AB=BB1=4,BC=3,AD=5,AE=3,F、G分別為CD、C1D1的中點(diǎn).
(1)求證:EF⊥平面BB1G;
(2)求二面角E-BB1-G的大。
(1)略
(2)
【解析】(1)
連接FG ∵F、G分別為CD、C1D1的中點(diǎn),
∴FGCC1 從而FGBB1
∴B、B1、F、G四點(diǎn)共面.
連接BF并延長(zhǎng)與AD的延長(zhǎng)線(xiàn)交于點(diǎn)H.[來(lái)源:Z+xx+k.Com]
∵F為CD的中點(diǎn),且BC∥A D.
∴△HFD△BFC ∴DH=BC=3
∴EH=DE+DH=5. 又∵BE=5,且F為BH的中點(diǎn).
∴EF⊥BF,又∵BB1⊥平面ABCD,且EF平面ABCD內(nèi).
∴BB1⊥EF ∴EF⊥平面BB1GF. 從而EF⊥平面BB1G.
(2)二面角E-BB1-G的大小等于二面角F-BB1-E的大小
∵EF⊥平面FBB1 且EB⊥BB1 FB⊥BB1
即∠EBF為二面角F-BB1-E的平面角
在△EFB中,EB=5,EF=. ∴
∴∠EBF= ∴二面角E-BB1-G的大小為
解法2:以A為坐標(biāo)原點(diǎn),AB為x軸,AA1為y軸,AD為Z軸建立空間直角坐標(biāo)系,
則E(0,0,3)、F(2,0,4)、G(2,4,4)、B(4,0,0)、B1(4,4,0)
(1)、、
∵,
∴EF⊥BB1,EF⊥B1G ∴EF⊥平面BB1G
(2)∵EF⊥平面BB1G ∴為平面BB1G的一個(gè)法向量
設(shè)平面EBB1的一個(gè)法向量為
則 解得,取
∴
∴二面角E-BB1-G的大小為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com