7.過(guò)拋物線y2=4x的焦點(diǎn),引傾斜角為60°的直線,交拋物線于A、B兩點(diǎn),則△OAB的面積為$\frac{{4\sqrt{3}}}{3}$.

分析 設(shè)A(x1,y1),B(x2,y2),則x=1+$\frac{\sqrt{3}}{3}$y代入y2=4x得:y2-$\frac{3\sqrt{3}}{3}$y-4=0,S=$\frac{1}{2}$|OF|•|y1-y2|,由此能求出△OAB的面積.

解答 解:設(shè)A(x1,y1),B(x2,y2),則
過(guò)F且傾斜角為60°的直線y=$\sqrt{3}$(x-1),
即x=1+$\frac{\sqrt{3}}{3}$y代入y2=4x得:y2-$\frac{3\sqrt{3}}{3}$y-4=0,∴y1+y2=$\frac{{4\sqrt{3}}}{3}$,y1y2=-4,
∴|y1-y2|=$\sqrt{\frac{48}{9}+16}$=$\frac{8\sqrt{3}}{3}$,
∴S=$\frac{1}{2}$|OF|•|y1-y2|=$\frac{1}{2}$×1×$\frac{8\sqrt{3}}{3}$=$\frac{{4\sqrt{3}}}{3}$.
故答案為$\frac{{4\sqrt{3}}}{3}$.

點(diǎn)評(píng) 本題主要考查了拋物線的簡(jiǎn)單性質(zhì),直線與拋物線的位置關(guān)系.在涉及焦點(diǎn)弦的問(wèn)題時(shí)常需要把直線與拋物線方程聯(lián)立利用韋達(dá)定理設(shè)而不求,進(jìn)而利用拋物線的定義求得問(wèn)題的答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)g(x)是R上的偶函數(shù),當(dāng)x<0時(shí),g(x)=ln(1-x),函數(shù)$f(x)=\left\{\begin{array}{l}{x^3},x≤0\\ g(x),x>0\end{array}\right.$滿足f(2-x2)>f(x),則實(shí)數(shù)x的取值范圍是(  )
A.(-∞,1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(1,2)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,輸出的S值為(  )
A.1B.$\sqrt{2015}-1$C.$\sqrt{2016}-1$D.$\sqrt{2017}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在三角形ABC中,$sinA=\frac{4}{5},cosB=\frac{5}{13}$,則cosC=( 。
A.$\frac{33}{65}$或$\frac{63}{65}$B.$\frac{63}{65}$C.$\frac{33}{65}$D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.參加成都七中數(shù)學(xué)選修課的同學(xué),對(duì)某公司的一種產(chǎn)品銷量與價(jià)格進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù)和散點(diǎn)圖:

定價(jià)x(元/kg)102030405060
年銷量y(kg)115064342426216586
z=2lny14.112.912.111.110.28.9
(參考數(shù)據(jù):$\sum_{i=1}^6{({x_i}-\overline x)}•({y_i}-\overline y)=-34580$,$\sum_{i=1}^6{({x_i}-\overline x)}•({z_i}-\overline z)=-175.5$$\sum_{i=1}^6{{{({y_i}-\overline y)}^2}}=776840$,$\sum_{i=1}^6{({y_i}-\overline y)}•({z_i}-\overline z)=3465.2$)
(1)根據(jù)散點(diǎn)圖判斷,y與x,z與x哪一對(duì)具有較強(qiáng)的線性相關(guān)性(給出判斷即可,不必說(shuō)明理由)?
(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立y關(guān)于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
(3)定價(jià)為多少元/kg時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線$\widehat{y}$=$\widehat$•x+$\widehat{a}$的斜率和截距的最小二乘估計(jì)分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n•\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-n•$\widehat$•$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若一個(gè)橢圓的內(nèi)接正方形有兩邊分別經(jīng)過(guò)它的兩個(gè)焦點(diǎn),則此橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.所給命題:
①菱形的兩條對(duì)角線互相平分的逆命題;
②{x|x2+1=0,x∈R}=∅或{0}=∅;
③對(duì)于命題:“p且q”,若p假q真,則“p且q”為假;
④有兩條邊相等且有一個(gè)內(nèi)角為60°是一個(gè)三角形為等邊三角形的充要條件.
其中為真命題的序號(hào)為③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)f(x)=5|x|-$\frac{1}{1+{x}^{2}}$,則使得f(2x+1)>f(x)成立的x取值范圍是( 。
A.(-1,-$\frac{1}{3}$)B.(-3,-1)C.(-1,+∞)D.(-∞,-1)∪(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,有一直角墻角,兩邊的長(zhǎng)度足夠長(zhǎng),若P處有一棵樹(shù)與兩墻的距離分別是4m和am(0<a<12),不考慮樹(shù)的粗細(xì).現(xiàn)用16m長(zhǎng)的籬笆,借助墻角圍成一個(gè)矩形花圃ABCD.設(shè)此矩形花圃的最大面積為u,若將這棵樹(shù)圍在矩形花圃內(nèi),則函數(shù)u=f(a)(單位m2)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案