Loading [MathJax]/jax/output/CommonHTML/jax.js
12.過(guò)點(diǎn)A(0,1)作直線,與雙曲線x2y29=1有且只有一個(gè)公共點(diǎn),則符合條件的直線的條數(shù)為( �。�
A.0B.2C.4D.無(wú)數(shù)

分析 用代數(shù)法,先聯(lián)立方程,消元后得到一個(gè)方程,先研究相切的情況,即判別式等于零,再研究與漸近線平行的情況.

解答 解:設(shè)過(guò)點(diǎn)(0,1)與雙曲線x2y29=1有且只有一個(gè)公共點(diǎn)的直線為y=kx+1.
根據(jù)題意:{y=kx+1x2y29=1,
消去y整理得(9-k2)x2-2kx-10=0,
∵△=0,
∴k=±10
又注意直線恒過(guò)點(diǎn)(0,1)且漸近線的斜率為±3,
與漸近線平行時(shí)也成立.
故過(guò)點(diǎn)(0,1)與雙曲線x2y29=1有且只有一個(gè)公共點(diǎn)的直線有4條.
故選C.

點(diǎn)評(píng) 本題主要考查直線與雙曲線的位置關(guān)系,在只有一個(gè)公共點(diǎn)時(shí),不要忽視了與漸近線平行的情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知點(diǎn)F是雙曲線x2a2y2b2=1a0b0的左焦點(diǎn),點(diǎn)E是該雙曲線的右焦點(diǎn),過(guò)點(diǎn)F且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),△ABE是直角三角形,則該雙曲線的離心率為1+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)fx={x+1x1xx1.若f(x)>f(x+1),則x的取值范圍是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在平面直角坐標(biāo)系xOy中,已知△ABC的頂點(diǎn)B、C恰好是雙曲線M:x29y216=1的左右焦點(diǎn),且頂點(diǎn)A在雙曲線M的右支上,則sinCsinBsinA=35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)a,b是不相等的兩個(gè)正數(shù),且blna-alnb=a-b,給出下列結(jié)論:①a+b-ab>1;②a+b>2;③1a+1>2.其中所有正確結(jié)論的序號(hào)是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖(1),在等腰梯形ABCD中,AB∥CD,E,F(xiàn)分別為AB和CD的中點(diǎn),且AB=EF=2,CD=6,M為EC中點(diǎn),現(xiàn)將梯形ABCD沿EF所在直線折起,使平面EFCB⊥平面EFDA,如圖(2)所示,N是CD的中點(diǎn).
(Ⅰ)求證:MN∥平面ADFE;
(Ⅱ)求四棱錐M-EFDA的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)={log12xx0x22xx0,則不等式f(x)≤0的解集為{x|x≥1或x=0或x≤-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖1,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=2,CD=4,點(diǎn)E為線段AB上異于A,B的點(diǎn),且EF∥AD,沿EF將面EBCF折起,使平面EBCF⊥平面AEFD,如圖2.
(Ⅰ)求證:AB∥平面DFC;
(Ⅱ)當(dāng)三棱錐F-ABE體積最大時(shí),求鈍二面角B-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的點(diǎn)關(guān)于實(shí)軸對(duì)稱,z1=1+i,則z1z2=(  )
A.-iB.iC.-1D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案