分析 (1)運用數(shù)列的遞推式:n=1時,a1=S1,n>1時,an=Sn-Sn-1,將n換為n+1,兩式相減可得nan+1=(n+1)an,整理變形,即可得到所求通項公式;
(2)數(shù)列{bn}為遞增數(shù)列,作差可得2•3n-λ(2n+1)>0,運用參數(shù)分離,構(gòu)造${c_n}=\frac{{2•{3^n}}}{2n+1}$,判斷單調(diào)性,即可所求范圍.
解答 解:(1)∵2Sn=(n+1)an,
∴2Sn+1=(n+2)an+1,
兩式相減可得2an+1=(n+2)an+1-(n+1)an,
即nan+1=(n+1)an,
∴$\frac{{{a_{n+1}}}}{n+1}=\frac{a_n}{n}$,
∴$\frac{a_n}{n}=\frac{{{a_{n-1}}}}{n-1}=…=\frac{a_1}{1}=1$,
∴an=n(n∈N*).
(2)${b_n}={3^n}-λ{n^2}$,
.${b_{n+1}}-{b_n}={3^{n+1}}-λ{({n+1})^2}$-(3n-λn2)=2•3n-λ(2n+1).
∵數(shù)列{bn}為遞增數(shù)列,
∴2•3n-λ(2n+1)>0,即$λ<\frac{{2•{3^n}}}{2n+1}$.
令${c_n}=\frac{{2•{3^n}}}{2n+1}$,則$\frac{{{c_{n+1}}}}{c_n}=\frac{{2•{3^{n+1}}}}{2n+3}•\frac{2n+1}{{2•{3^n}}}=\frac{6n+3}{2n+1}>1$.
∴{cn}為遞增數(shù)列,
∴λ<c1=2,
即λ的取值范圍為(-∞,2).
點評 本題考查數(shù)列的通項公式的求法,注意運用數(shù)列的遞推式:n=1時,a1=S1,n>1時,an=Sn-Sn-1,考查數(shù)列的單調(diào)性的運用,注意運用分離參數(shù),考查化簡整理的運算和變形能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -9 | B. | 9 | C. | 6 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | $\frac{π}{6}$或$\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\sqrt{2}-1$ | D. | $2-\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{3\sqrt{10}}{10}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com