精英家教網 > 高中數學 > 題目詳情

【題目】已知函數,.

(1)若函數處的切線與直線平行,求實數的值;

(2)試討論函數在區(qū)間上最大值;

(3)若時,函數恰有兩個零點,求證:.

【答案】(1);(2) 時,,當時,;(3)見解析.

【解析】

試題分析:(1)求函數的導數,由求之即可;(2) ,分當分別討論函數的單調性,求其最值即可;(3)可得,即,設,則,即,故,用作差比較法證明即可.

試題解析: (1)由,

由于函數處的切線與直線平行,

,解得.

(2),由時,時,,

所以時,上單調遞減,

上的最大值為;

,上單調遞增,在上單調遞減,

上的最大值為;

(3)若時,恰有兩個零點,

,

,

,設,,,

,記函數,因,

遞增,,,

,,故成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為振興旅游業(yè),四川省2009年面向國內發(fā)行總量為2000萬張的熊貓優(yōu)惠卡,向省外人士發(fā)行的是熊貓金卡(簡稱金卡),向省內人士發(fā)行的是熊貓銀卡(簡稱銀卡).某旅游公司組織了一個有36名游客的旅游團到四川名勝旅游,其中 是省外游客,其余是省內游客.在省外游客中有 持金卡,在省內游客中有 持銀卡.
(Ⅰ)在該團中隨機采訪3名游客,求恰有1人持金卡且持銀卡者少于2人的概率;
(Ⅱ)在該團的省內游客中隨機采訪3名游客,設其中持銀卡人數為隨機變量ξ,求ξ的分布列及數學期望Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知x1,x2.

求證:tan x1+tan x2>2tan.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓E: (a>b>0)的左、右焦點F1、F2 , 其離心率e= ,且點F2到直線 =1的距離為
(1)求橢圓E的方程;
(2)設點P(x0 , y0)是橢圓E上的一點(x0≥1),過點P作圓(x+1)2+y2=1的兩條切線,切線與y軸交于A、B兩點,求|AB|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線和橢圓有公共的焦點,且離心率為

)求雙曲線的方程.

)經過點作直線交雙曲線, 兩點,且的中點,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有下列四個命題:
①垂直于同一條直線的兩條直線平行;
②垂直于同一條直線的兩個平面平行;
③垂直于同一平面的兩個平面平行;
④垂直于同一平面的兩條直線平行.
其中正確的命題有(填寫所有正確命題的編號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)若函數處的切線方程為,求的值;

(Ⅱ)討論方程的解的個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)是定義在R上的偶函數,且f(﹣x﹣1)=f(x﹣1),當x∈[﹣1,0]時,f(x)=﹣x3 , 則關于x的方程f(x)=|cosπx|在[﹣ , ]上的所有實數解之和為(
A.﹣7
B.﹣6
C.﹣3
D.﹣1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題恒成立;命題方程表示雙曲線.

(1)若命題為真命題,求實數的取值范圍;

(2)若命題“”為真命題,“”為假命題,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案