【題目】如圖,在四棱錐中,底面是菱形,且.點
是棱的中點,平面與棱交于點.
(1)求證:∥;
(2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)推導(dǎo)出,從而平面,由此能證明.
(2)取中點,連接,,以為原點,、、所在直線為坐標軸建立空間直角坐標系,利用向量法能求出平面與平面所成的二面角的余弦值.
試題解析:(1)證明:∵是菱形,∴,
又平面,平面,
∴平面,
∵四點共面,且面面,
∴.
(2)解:取中點,連接,,
∵,∴,
∵平面平面,平面平面,
∴面,
∴,在菱形中,∵,,是中點,
∴,
如圖,以為原點,、、所在直線為坐標軸建立空間直角坐標系,
由得,,,,,
,.
又∵,點是棱中點,∴點是棱中點,
∴,,,
設(shè)平面的法向量為,
則有,,取,則.
∵平面,∴是平面的一個法向量,
,二面角的余弦值為,
∴平面與平面所成的二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)是偶函數(shù)的導(dǎo)函數(shù),在區(qū)間上的唯一零點為2,并且當時,,則使得成立的的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=AD=2,BC=1,CD= .
(1)求證:平面PQB⊥平面PAD;
(2)若PM=3MC,求二面角M﹣BQ﹣C的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣4x+a+3,a∈R. (Ⅰ)若函數(shù)y=f(x)的圖象與x軸無交點,求a的取值范圍;
(Ⅱ)若函數(shù)y=f(x)在[﹣1,1]上存在零點,求a的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=bx+5﹣2b,b∈R.當a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小李從網(wǎng)上購買了一件商品,快遞員計劃在下午5:00-6:00之間送貨上門,已知小李下班到家的時間為下午5:30-6:00.快遞員到小李家時,如果小李未到家,則快遞員會電話聯(lián)系小李.若小李能在10分鐘之內(nèi)到家,則快遞員等小李回來;否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)在定義域(0,+∞)上為增函數(shù),且滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(9),f(27)的值
(2)解不等式f(x)+f(x﹣8)<2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com