設(shè)橢圓=1(a>b>0)的左焦點為F,離心率為,過點F且與x軸垂直的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若=8,求k的值.

(1)=1.(2)k=±.

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標記錄如下:、、
(1)經(jīng)判斷點,在拋物線上,試求出的標準方程;
(2)求拋物線的焦點的坐標并求出橢圓的離心率;
(3)過的焦點直線與橢圓交不同兩點且滿足,試求出直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的焦點坐標為F1(-1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于P,Q兩點,且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點M,N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C1y2=1,橢圓C2C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標原點,點A,B分別在橢圓C1C2上,=2,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率與雙曲線的離心率互為倒數(shù),直線與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點為,右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;
(3)設(shè)第(2)問中的軸交于點,不同的兩點上,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)橢圓M=1(a>)的右焦點為F1,直線lxx軸交于點A,若1=2 (其中O為坐標原點).
(1)求橢圓M的方程;
(2)設(shè)P是橢圓M上的任意一點,EF為圓Nx2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個端點),求·的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知分別是橢圓的左,右頂點,點在橢圓 上,且直線與直線的斜率之積為

(1)求橢圓的標準方程;
(2)點為橢圓上除長軸端點外的任一點,直線,與橢圓的右準線分別交于點
①在軸上是否存在一個定點,使得?若存在,求點的坐標;若不存在,說明理由;
②已知常數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線lxy=0與以原點為圓心, 以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1k2=4,證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓的交點為,求弦長.

查看答案和解析>>

同步練習冊答案