已知橢圓中心在坐標原點O,焦點在x軸上,長軸長是短軸長的2倍,且經(jīng)過點M(2,1),直線l平行OM,且與橢圓交于A、B兩個不同的點.
(1)求橢圓方程;
(2)若∠AOB為鈍角,求直線l在y軸上的截距m的取值范圍;
(3)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.
【答案】分析:(1)設橢圓方程,利用長軸長是短軸長的2倍,且經(jīng)過點M(2,1),建立方程組,即可求得橢圓方程;
(2)設l方程與橢圓方程聯(lián)立,利用韋達定理及∠AOB為鈍角,結合向量知識,即可求直線l在y軸上的截距m的取值范圍;
(3)依題即證kAM+kBM=0,利用韋達定理代入,即可證得結論.
解答:(1)解:設橢圓方程,依題意可得…2分
可得,所以橢圓方程為….4分
(2)解:設l方程為:,與橢圓方程聯(lián)立得:x2+2mx+2m2-4=0
由韋達定理得:x1+x2=-2m,…6分
設A(x1,y1),B(x2,y2),
因為∠AOB為鈍角,所以
==…7分
又直線l平行OM,∴….8分
(3)證明:依題即證kAM+kBM=0…9分
..…10分
,代入上式,得….12分
將(2)中韋達定理代入得,上式==0
即證.…14分
點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查向量知識的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓中心在坐標原點O,焦點在x軸上,長軸長是短軸長的2倍,且經(jīng)過點M(2,1),直線l平行OM,且與橢圓交于A、B兩個不同的點.
(1)求橢圓方程;
(2)若∠AOB為鈍角,求直線l在y軸上的截距m的取值范圍;
(3)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓中心在坐標原點O,焦點在坐標軸上,直線y=x+1與該橢圓相交于P和Q點,且OP⊥OQ,|PQ|=,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓中心在坐標原點O,焦點在x軸上,長軸長是短軸長的2倍,且經(jīng)過點M(2,1),直線l平行OM,且與橢圓交于A、B兩個不同的點.
(1)求橢圓方程;
(2)若∠AOB為鈍角,求直線l在y軸上的截距m的取值范圍;
(3)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省武漢市部分重點中學聯(lián)考高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知橢圓中心在坐標原點O,焦點在x軸上,長軸長是短軸長的2倍,且經(jīng)過點M(2,1),直線l平行OM,且與橢圓交于A、B兩個不同的點.
(1)求橢圓方程;
(2)若∠AOB為鈍角,求直線l在y軸上的截距m的取值范圍;
(3)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.

查看答案和解析>>

同步練習冊答案