精英家教網 > 高中數學 > 題目詳情

飛機的航線和山頂在同一個鉛直平面內,已知飛機的高度為海拔20250m,速度為180km/h,飛行員先看到山頂的俯角為18°30′,經過120秒后,又看到山頂的俯角為81°,則山頂的海拔高度=_____________m(精確到1m).

答案:18130
解析:

設飛行員的兩次觀測點依次為AB,山頂為M,山頂到直線AB的距離為MD,如圖,在△ABM中,由已知得A18°30′,B90°。M62°30′,又AB180×6(km),根據正弦定理,可得BMMD2120(m)即可求海拔高度為20250212018130(m)


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:044

如圖,飛機的航線和山頂在同一個鉛直平面內,已知飛機的高度為海拔20250 m,速度為189 km/h,飛行員先看到山頂的俯角為,經過960 s后,又看到山頂的俯角為.求山頂的海拔高度(結果精確到1 m)

查看答案和解析>>

科目:高中數學 來源: 題型:

飛機的航線和山頂在同一個鉛垂平面內,已知飛機的高度為海拔20 250m,速度為1 000km/h,飛行員先看到山頂的俯角為,經過150 S后又看到山頂的俯角為,求山頂的海拔高度(精確到1m).

查看答案和解析>>

科目:高中數學 來源:2015屆新課標高一下學期第四次月考數學試卷(解析版) 題型:解答題

(本小題滿分12分)

如圖,飛機的航線和山頂在同一個鉛直平面內,已知飛機的高度為海拔25000米,速度為3000米/分鐘,飛行員先在點A看到山頂C的俯角為300,經過8分鐘后到達點B,此時看到山頂C的俯角為600,則山頂的海拔高度為多少米.(參考數據:=1.414,=1.732,=2.449).

 

 

查看答案和解析>>

科目:高中數學 來源:2012年人教A版必修五1.2應用舉例練習卷(解析版) 題型:解答題

 飛機的航線和山頂在同一個鉛垂平面內,已知飛機的高度為海拔20250m,速度為1000km/h,飛行員先看到山頂的俯角為,經過150s后又看到山頂的俯角為,求山頂的海拔高度(精確到1m).

 

查看答案和解析>>

科目:高中數學 來源: 題型:

飛機的航線和山頂在同一個鉛直平面內,已知飛機的高度為海拔h m,速度為vkm/h,飛行員先看到山頂的俯角為α,經過t秒后又看到山頂的俯角為β,求山頂的海拔高度(用h、v、α、β等表示).

查看答案和解析>>

同步練習冊答案