與橢圓為參數(shù))有公共點(diǎn),則圓的半徑的取值范圍是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,曲線G的方程為y2=20(y≥0).以原點(diǎn)為圓心,以tt >0)為半徑的圓分別與曲線Gy軸的正半軸相交于點(diǎn)A與點(diǎn)B.直線ABx軸相交于點(diǎn)C.

(Ⅰ)求點(diǎn)A的橫坐標(biāo)a與點(diǎn)C的橫坐標(biāo)c的關(guān)系式;
(Ⅱ)設(shè)曲線G上點(diǎn)D的橫坐標(biāo)為a+2,求證:直線CD的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分12分)直線l 與拋物線y2 = 4x 交于兩點(diǎn)A、BO 為原點(diǎn),且= -4.
(I)       求證:直線l 恒過一定點(diǎn);
(II)     若 4≤| AB | ≤,求直線l 斜率k 的取值范圍;
(Ⅲ) 設(shè)拋物線的焦點(diǎn)為F,∠AFB = θ,試問θ 能否等于120°?若能,求出相應(yīng)的直線l 的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)
已知橢圓的長軸長為,離心率為分別為其左右焦點(diǎn).一動(dòng)圓過點(diǎn),且與直線相切.
(Ⅰ)(。┣髾E圓的方程; (ⅱ)求動(dòng)圓圓心軌跡的方程;
(Ⅱ) 在曲線上有兩點(diǎn)M、N,橢圓C上有兩點(diǎn)P、Q,滿足共線,共線,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程mx+ny2=0與mx2+ny2=1(mn≠0)在同一坐標(biāo)系中的圖象大致是                  (     )

A                   B                    C                   D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)F1、F2為曲線C1的焦點(diǎn),P是曲線C2與C1的一個(gè)交點(diǎn),則的值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若圓方程為,圓方程為,則方程表示的軌跡是
A.經(jīng)過兩點(diǎn)的直線B.線段的中垂線
C.兩圓公共弦所在的直線D.一條直線且該直線上的點(diǎn)到兩圓的切線長相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)已知直線與拋物線
交于A、B兩點(diǎn),則實(shí)數(shù)的取值范圍是                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
為了考察冰川的融化狀況,一支科考隊(duì)在某冰川上相距8km的A,B兩點(diǎn)各建一個(gè)考察基地。視冰川面為平面形,以過A,B兩點(diǎn)的直線為x軸,線段AB的的垂直平分線為y軸建立平面直角坐標(biāo)系(圖6)在直線x=2的右側(cè),考察范圍為到點(diǎn)B的距離不超過km區(qū)域;在直線x=2的左側(cè),考察范圍為到A,B兩點(diǎn)的距離之和不超過km區(qū)域。
(Ⅰ)求考察區(qū)域邊界曲線的方程;
(Ⅱ)如圖6所示,設(shè)線段P1P2,P2P3是冰川的部分邊界線(不考慮其他邊界線),當(dāng)冰川融化時(shí),邊界線沿與其垂直的方向朝考察區(qū)域平行移動(dòng),第一年移動(dòng)0.2km,以后每年移動(dòng)的距離為前一年的2倍,求冰川邊界線移動(dòng)到考察區(qū)域所需的最短時(shí)間。

查看答案和解析>>

同步練習(xí)冊答案