【題目】如圖,在幾何體中,為正三角形,,平面,若是棱的中點,且,則異面直線與所成角的余弦值為( )
A.B.
C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的非負半軸建立極坐標(biāo)系,點的極坐標(biāo),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若為曲線上的動點,求中點到直線的距離最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新能源汽車是我國汽車工業(yè)由大變強的一條必經(jīng)之路!國家對其給予政策上的扶持,己成為我國的戰(zhàn)略方針.近年來,我國新能源汽車制造蓬勃發(fā)展,某著名車企自主創(chuàng)新,研發(fā)了一款新能源汽車,經(jīng)過大數(shù)據(jù)分析獲得:在某種路面上,該品牌汽車的剎車距離(米)與其車速(千米/小時)滿足下列關(guān)系:(,是常數(shù)).(行駛中的新能源汽車在剎車時由于慣性作用,要繼續(xù)往前滑行一段距離才能停下,這段距離叫做剎車距離).如圖是根據(jù)多次對該新能源汽車的實驗數(shù)據(jù)繪制的剎車距離(米)與該車的車速(千米/小時)的關(guān)系圖.該新能源汽車銷售公司為滿足市場需求,國慶期間在甲、乙兩地同時展銷該品牌的新能源汽車,在甲地的銷售利潤(單位:萬元)為,在乙地的銷售利潤(單位:萬元)為,其中為銷售量(單位:輛).
(1)若該公司在兩地共銷售20輛該品牌的新能源汽車,則能獲得的最大利潤是多少?
(2)如果要求剎車距離不超過25.2米,求該品牌新能源汽車行駛的最大速度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,其中.
(1)若,證明:當(dāng)時,;
(2)設(shè),且,其中是自然對數(shù)的底數(shù).
①證明恰有兩個零點;
②設(shè)如為的極值點,為的零點,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面為正方形的四棱錐中,平面,為棱上一動點,.
(1)當(dāng)為中點時,求證:平面;
(2)當(dāng)平面時,求的值;
(3)在(2)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面為正方形的四棱錐P-ABCD中,側(cè)棱PD⊥底面ABCD,PD=DC,點E是線段PC的中點.
(1)求異面直線AP與BE所成角的大。
(2)若點F在線段PB上,使得二面角F-DE-B的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年12月19日,2014年中國數(shù)學(xué)奧林匹克競賽(第30屆全國中學(xué)生數(shù)學(xué)冬令營)在重慶市巴蜀中學(xué)舉行.參加本屆中國數(shù)學(xué)奧林匹克競賽共有來自各省、市(自治區(qū)、直轄市)、香港地區(qū)、澳門地區(qū),以及俄羅斯、新加坡等國的30余支代表隊,共317名選手.競賽為期2天,每天3道題,限時4個半小時完成.部分優(yōu)勝者將參加為國際數(shù)學(xué)奧林匹克競賽而組建的中國國家集訓(xùn)隊.中國數(shù)學(xué)奧林匹克競賽(全國中學(xué)生數(shù)學(xué)冬令營)是在全國高中數(shù)學(xué)聯(lián)賽基礎(chǔ)上進行的一次較高層次的數(shù)學(xué)競賽,該項活動也是中國中學(xué)生級別最高、規(guī)模最大、最有影響的全國性數(shù)學(xué)競賽.2020年第29屆全國中學(xué)生生物學(xué)競賽也將在重慶巴蜀中學(xué)舉行.巴蜀中學(xué)校本選修課“數(shù)學(xué)建!迸d趣小組調(diào)查了2019年參加全國生物競賽的200名學(xué)生(其中男生、女生各100人)的成績,得到這200名學(xué)生成績的中位數(shù)為78.這200名學(xué)生成績均在50與110之間,且成績在內(nèi)的人數(shù)為30,這200名學(xué)生成績的高于平均數(shù)的男生有62名,女生有38名.并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖.
(1)求,的值;
(2)填寫下表,能否有的把握認為學(xué)生成績是否高于平均數(shù)與性別有關(guān)系?
男生 | 女生 | 總計 | |
成績不高于平均數(shù) | |||
成績高于平均數(shù) | |||
總計 |
參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com