[2013·湖南婁底5月]平面α∥平面β,點A,C∈α,B,D∈β,則直線AC∥直線BD的充要條件是(  )
A.AB∥CDB.AD∥CB
C.AB與CD相交D.A,B,C,D四點共面
D
充分性:A,B,C,D四點共面,由平面與平面平行的性質(zhì)知AC∥BD.必要性顯然成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB=AD,∠BAD=90°,M,N,G分別是BD,BC,AB的中點,將等邊△BCD沿BD折疊到△BC′D的位置,使得AD⊥C′B.
(1)求證:平面GNM∥平面ADC′.
(2)求證:C′A⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m,n為兩條不同的直線,為兩個不同的平面,,則下列命題中的假命題是(   )
A.若m//n,則
B.若,則
C.若相交,則相交
D.若相交,則相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若空間中四條直線兩兩不同的直線、、,滿足,,則下列結(jié)論一定正確的是(   )
A.B.
C.、既不平行也不垂直D.、的位置關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是兩條不同的直線,、是兩個不同的平面.則下列命題中正確的是(    )
A.m⊥,n,m⊥n
B.=m,n⊥mn⊥
C.,m⊥,n∥m⊥n
D.,m⊥,n∥m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2013·廣東高考]設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面.下列命題中正確的是(  )
A.若α⊥β,m?α,n?β,則m⊥n
B.若α∥β,m?α,n?β,則m∥n
C.若m⊥n,m?α,n?β,則α⊥β
D.若m⊥α,m∥n,n∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,上一點,面,四邊形為矩形 ,,
(1)已知,且∥面,求的值;
(2)求證:,并求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知三條不重合的直線和兩個不重合的平面,下列命題正確的是(   )
A.若,,則
B.若,,且,則
C.若,,則
D.若,,且,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題中正確的是(    )
A.若α⊥β,m?α,n?β,則m⊥n
B.若α∥β,m?α,n?β,則m∥n
C.若m⊥n,m?α,n?β,則α⊥β
D.若m⊥α,m∥n,n∥β,則α⊥β

查看答案和解析>>

同步練習(xí)冊答案