【題目】已知常數(shù),函數(shù).

(1)討論在區(qū)間上的單調(diào)性;

(2)存在兩個極值點,,的取值范圍.

【答案】(1)詳見解析 (2)

【解析】試題分析:(1)首先對函數(shù)求導并化簡得到導函數(shù),導函數(shù)的分母恒大于0,分子為含參的二次函數(shù),故討論分子的符號,確定導函數(shù)符號得到原函數(shù)的單調(diào)性,即分得到導函數(shù)分子大于0和小于0的解集進而得到函數(shù)的單調(diào)性.

(2)利用第(1)可得到當,導數(shù)等于0有兩個根,根據(jù)題意即為兩個極值點,首先導函數(shù)等于0的兩個根必須在原函數(shù)的可行域內(nèi),關于的表達式帶入,得到關于的不等式,然后利用導函數(shù)討論的取值范圍使得成立.即可解決該問題.

(1)對函數(shù)求導可得

,因為,所以當,, 恒成立,則函數(shù)單調(diào)遞增,, ,則函數(shù)在區(qū)間單調(diào)遞減,單調(diào)遞增的.

(2):(1)對函數(shù)求導可得 ,因為,所以當,, 恒成立,則函數(shù)單調(diào)遞增,, ,則函數(shù)在區(qū)間單調(diào)遞減,單調(diào)遞增的.

(2)函數(shù)的定義域為,(1)可得當, , ,,為函數(shù)的兩個極值點,代入可得

=

,,: , , , ,

, ,求導可得,所以函數(shù)上單調(diào)遞減,,不符合題意.

, ,求導可得,所以函數(shù)上單調(diào)遞減,,恒成立,

綜上的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓練對提高‘數(shù)學應用題’得分率有幫助”的試驗,其中甲班為試驗班(加強語文閱讀理解訓練),乙班為對比班(常規(guī)教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數(shù)學應用題上的得分率基本一致,試驗結束后,統(tǒng)計幾次數(shù)學應用題測試的平均成績(均取整數(shù))如下表所示:

60分及以下

61~70分

71~80分

81~90分

91~100分

甲班(人數(shù))

3

6

12

15

9

乙班(人數(shù))

4

7

16

12

6

現(xiàn)規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.

(1)由以上統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,并判斷是否有的把握認為“加強‘語文閱讀理解’訓練對提高‘數(shù)學應用題’得分率”有幫助;

(2)對甲乙兩班60分及以下的同學進行定期輔導,一個月后從中抽取3人課堂檢測,表示抽取到的甲班學生人數(shù),求及至少抽到甲班1名同學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某圓的極坐標方程為,

(1)圓的普通方程和參數(shù)方程;

(2)圓上所有點的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓過點,且離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點作斜率分別為的兩條直線,分別交橢圓于點,,且,求直線過定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓的極坐標方程為.

(1)求直線的普通方程與圓的直角坐標方程;

(2)設動點在圓上,動線段的中點的軌跡為,與直線交點為,且直角坐標系中,點的橫坐標大于點的橫坐標,求點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓的極坐標方程為.

(1)求直線的普通方程與圓的直角坐標方程;

(2)設動點在圓上,動線段的中點的軌跡為與直線交點為,且直角坐標系中,點的橫坐標大于點的橫坐標,求點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,隨著互聯(lián)網(wǎng)的發(fā)展,諸如“滴滴打車”“神州專車”等網(wǎng)約車服務在我國各城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網(wǎng)約車在省的發(fā)展情況,省某調(diào)查機構從該省抽取了5個城市,分別收集和分析了網(wǎng)約車的兩項指標數(shù),數(shù)據(jù)如下表所示:

城市1

城市2

城市3

城市4

城市5

指標數(shù)

2

4

5

6

8

指標數(shù)

3

4

4

4

5

經(jīng)計算得:,.

(1)試求間的相關系數(shù),并利用說明是否具有較強的線性相關關系(若,則線性相關程度很高,可用線性回歸模型擬合);

(2)建立關于的回歸方程,并預測當指標數(shù)為7時,指標數(shù)的估計值;

(3)若城市的網(wǎng)約車指標數(shù)落在區(qū)間之外,則認為該城市網(wǎng)約車數(shù)量過多,會對城市交通管理帶來較大的影響,交通管理部門將介入進行治理,直至指標數(shù)回落到區(qū)間之內(nèi).現(xiàn)已知2018年11月該城市網(wǎng)約車的指標數(shù)為13,問:該城市的交通管理部門是否要介入進行治理?試說明理由.

附:相關公式:,,.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面是正方形,頂點在底面的射影是底面的中心,且各頂點都在同一球面上,若該四棱錐的側棱長為,體積為4,且四棱錐的高為整數(shù),則此球的半徑等于( )(參考公式:

A. 2B. C. 4D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,,分別是其左、右焦點,且過點.

(1)求橢圓的標準方程;

(2)求的外接圓的方程.

查看答案和解析>>

同步練習冊答案