1.在△ABC中,已知b=3,c=3$\sqrt{3}$,∠B=30°,則∠A=( 。
A.60°B.90°C.30°D.30°或90°

分析 由已知利用正弦定理可求sinC的值,結(jié)合C的范圍可求C的值,利用三角形內(nèi)角和定理可求A的值.

解答 解:在△ABC中,∵b=3,c=3$\sqrt{3}$,∠B=30°,
∴sinC=$\frac{csinB}$=$\frac{3\sqrt{3}×\frac{1}{2}}{3}$=$\frac{\sqrt{3}}{2}$,
∵c>b,可得:C∈(30°,180°),
∴C=60°或120°,
∴A=180°-(B+C)=90°或30°.
故選:D.

點(diǎn)評(píng) 本題主要考查了正弦定理,三角形內(nèi)角和定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,D是BC的中點(diǎn).
(Ⅰ)求證:A1B∥平面ADC1;
(Ⅱ)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1與平面ABC所成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.復(fù)數(shù)z=sin$\frac{π}{3}$-icos$\frac{π}{6}$,則|z|=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,能判斷三角形是銳角三角形的條件是( 。
A.sinA+sinB=0.2B.$\overrightarrow{AB}$•$\overrightarrow{BC}$<0
C.b=3,c=3$\sqrt{3}$,B=30°D.tanA+tanB+tanC>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a=0.5c+bcosC,
(1)求角B的大;
(2)若△ABC的面積為$\sqrt{3}$,b=$\sqrt{13}$,求a+c 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.?dāng)?shù)列$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{5}{8}$,$\frac{13}{16}$,-$\frac{29}{32}$,$\frac{61}{64}$,…的通項(xiàng)公式是an=(-1)n•$\frac{{2}^{n}-3}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.命題:“指數(shù)函數(shù)y=ax(a>0)是增函數(shù),而y=($\frac{1}{2}$)x是指數(shù)函數(shù),所以y=($\frac{1}{2}$)x是增函數(shù)”結(jié)論是錯(cuò)誤的,其原因是(  )
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=3sin(2x-$\frac{π}{6}$)的單調(diào)增區(qū)間是[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,$AB=BC=CA=\sqrt{3}$,$A{A_1}=2\sqrt{2}$,則該三棱柱外接球的表面積等于12π.

查看答案和解析>>

同步練習(xí)冊(cè)答案