3.函數(shù)y=3${\;}^{-{x}^{2}+ax}$在[$\frac{1}{2}$,1]上單調(diào)遞增,則a的取值范圍為[2,+∞).

分析 由題意利用復(fù)合函數(shù)的單調(diào)性可得y=-x2+ax在[$\frac{1}{2}$,1]上單調(diào)遞增,可得 $\frac{a}{2}$≥1,由此求得a的范圍.

解答 解:∵函數(shù)y=3${\;}^{-{x}^{2}+ax}$在[$\frac{1}{2}$,1]上單調(diào)遞增,∴y=-x2+ax在[$\frac{1}{2}$,1]上單調(diào)遞增,
∴$\frac{a}{2}$≥1,即a≥2,
故答案為:[2,+∞).

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)、指數(shù)函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知MOD函數(shù)是一個(gè)求余函數(shù),其格式為MOD(n,m),其結(jié)果為n除以m的余數(shù),例如MOD(12,5)=2,下面是一個(gè)算法的程序框圖,當(dāng)輸入的n為77時(shí),則輸出的結(jié)果為( 。
A.9B.5C.11D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知點(diǎn)P在圓x2+y2-2x+4y+1=0上,點(diǎn)Q在不等式$\left\{\begin{array}{l}{x+y≥2}\\{0≤y≤1}\end{array}\right.$,表示的平面區(qū)域內(nèi),則線(xiàn)段PQ長(zhǎng)的最小值是$\sqrt{5}-2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.小明同學(xué)早晨從家到學(xué)校上學(xué),他需要乘坐520路公交車(chē),已知小明到達(dá)車(chē)站的時(shí)間是隨機(jī)的,該路公交車(chē)每15分鐘來(lái)一趟,則小明在公交車(chē)站上等車(chē)時(shí)間少于10分鐘的概率為(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)由如表定義:
x25314
f(x)12345
若a0=4,an+1=f(an),n=0,1,2,…,則a2017值為(  )
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)y=Asin(ωx+ϕ)其中$A>0,ω>0,|ϕ|<\frac{π}{2}$,若函數(shù)的最小正周期為π,最大值為2,且過(guò)(0,1)點(diǎn),
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知P為橢圓4x2+y2=4上的點(diǎn),O為原點(diǎn),則|OP|的取值范圍是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.通過(guò)研究函數(shù)f(x)=2x4-10x2+2x-1在x∈R內(nèi)的零點(diǎn)個(gè)數(shù),進(jìn)一步研究得函數(shù)g(x)=2xn+10x2-2x-1(n>3,n∈N且n為奇數(shù))在x∈R內(nèi)零點(diǎn)有3個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.圓心角為2弧度的扇形的周長(zhǎng)為3,則此扇形的面積為$\frac{9}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案