2.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線為正方形OABC的邊OA,OC所在的直線,點(diǎn)B為該雙曲線的焦點(diǎn),若正方形OABC的邊長(zhǎng)為2,則a=2.

分析 根據(jù)雙曲線漸近線在正方形的兩個(gè)邊,得到雙曲線的漸近線互相垂直,即雙曲線是等軸雙曲線,結(jié)合等軸雙曲線的性質(zhì)進(jìn)行求解即可.

解答 解:∵雙曲線的漸近線為正方形OABC的邊OA,OC所在的直線,
∴漸近線互相垂直,則雙曲線為等軸雙曲線,
即漸近線方程為y=±x,
即a=b,
∵正方形OABC的邊長(zhǎng)為2,
∴OB=2$\sqrt{2}$,即c=2$\sqrt{2}$,
則a2+b2=c2=8,
即2a2=8,
則a2=4,a=2.
故答案為:2.

點(diǎn)評(píng) 本題主要考查雙曲線的性質(zhì)的應(yīng)用,根據(jù)雙曲線漸近線垂直關(guān)系得到雙曲線是等軸雙曲線是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知等差數(shù)列{an}滿足a1+a2=-1,a3=4,則a4+a5=( 。
A.17B.16C.15D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.通過(guò)$\widehat{{e}_{1}}$,$\widehat{{e}_{2}}$,…,$\widehat{{e}_{n}}$來(lái)判斷模擬型擬合的效果,判斷原始數(shù)據(jù)中是否存在可疑數(shù)據(jù),這種分工稱為( 。
A.回歸分析B.獨(dú)立性檢驗(yàn)分析C.殘差分析D.散點(diǎn)圖分析

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知tanα=7,求下列各式的值.
(1)$\frac{sinα+cosα}{2sinα-cosα}$
(2)sinαcosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知點(diǎn)P在函數(shù)$f(x)=ln({2x+1})+\frac{{{x^2}+x}}{8}$圖象上,則函數(shù)f(x)在點(diǎn)P處切線傾斜角α的取值范圍(  )
A.$[{\frac{π}{4},\frac{π}{2}})$B.$[{\frac{π}{4},\frac{3π}{4}}]$C.$[{\frac{π}{4},π})$D.$[{0,\frac{π}{4}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為4+$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,等腰梯形ABCD中,AB=4,BC=CD=2,若E、F分別是邊BC、AB上的點(diǎn),且滿足$\frac{BE}{BC}$=$\frac{AF}{AB}$=λ,當(dāng)$\overrightarrow{AE}$•$\overrightarrow{DF}$=0時(shí),則有(  )
A.λ∈($\frac{1}{8}$,$\frac{1}{4}$)B.λ∈($\frac{1}{4}$,$\frac{3}{8}$)C.λ∈($\frac{3}{8}$,$\frac{1}{2}$)D.λ∈($\frac{1}{2}$,$\frac{5}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.將函數(shù)y=sin(x-$\frac{π}{12}$)圖象上的點(diǎn)P($\frac{π}{4}$,t)向左平移s(s>0)個(gè)單位,得到點(diǎn)P′,若P′位于函數(shù)y=sin2x的圖象上,則( 。
A.t=$\frac{1}{2}$,s的最小值為$\frac{π}{6}$B.t=$\frac{\sqrt{3}}{2}$,s的最小值為$\frac{π}{6}$
C.t=$\frac{1}{2}$,s的最小值為$\frac{π}{12}$D.t=$\frac{\sqrt{3}}{2}$,s的最小值為$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x|x2-3x+2<0},B={x|3-x>0},則A∩B=( 。
A.(2,3)B.(1,3)C.(1,2)D.(-∞,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案