6.已知圓x2+(y-2)2=4,點(diǎn)A在直線x-y-2=0上,過A引圓的兩條切線,切點(diǎn)為T1,T2,
(Ⅰ)若A點(diǎn)為(1,-1),求直線T1T2的方程;
(Ⅱ)求|AT1|的最小值.

分析 (Ⅰ)設(shè)出兩切點(diǎn)坐標(biāo),根據(jù)圓的切線方程公式分別寫出兩條切線方程,然后把A點(diǎn)坐標(biāo)代入后得到過兩切點(diǎn)的直線方程即可;
(Ⅱ)求|AT1|的最小值,求出圓心到直線的距離即可.

解答 解:(Ⅰ)設(shè)切點(diǎn)為T1(x1,y1),T2(x2,y2),
則AT1的方程為x1x+(y1-2)(y-2)=4,AT2的方程為x2x+(y2-2)(y-2)=4,
把A(1,-1)分別代入求得x1-3(y1-2)=4,x2-3(y2-2)=4
∴x-3(y-2)=4,化簡(jiǎn)得x-3y+2=0.
(Ⅱ)求|AT1|的最小值,求出圓心到直線的距離即可.
∵圓心到直線的距離d=$\frac{|0-2-2|}{\sqrt{2}}$=2$\sqrt{2}$,
∴|AT1|的最小值=$\sqrt{(2\sqrt{2})^{2}-4}$=2.

點(diǎn)評(píng) 此題考查了直線與圓的位置關(guān)系,考查圓的切線方程公式,涉及的知識(shí)有兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,圓的標(biāo)準(zhǔn)方程,當(dāng)直線與圓相切時(shí),圓心到直線的距離等于圓的半徑,常常利用此性質(zhì)列出方程來解決問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}的前n項(xiàng)和記為Sn,a1=t,an+1=2Sn+1,n∈N*
(Ⅰ)當(dāng)實(shí)數(shù)t為何值時(shí),數(shù)列{an}是等比數(shù)列?
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)bn=log3an+1:Tn是數(shù)列 {$\frac{1}{_{n}•_{n+1}}$} 前n項(xiàng)和,求T2011的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求下列函數(shù)的定義域:
(1)y=3${\;}^{\sqrt{2x-1}}$;(2)y=0.7${\;}^{\frac{1}{x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2,x>0}\\{0,x≤0}\end{array}\right.$,則不等式2-x≥(2x-1)f(x)的解集為(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,x∈R,若對(duì)任意θ∈(0,$\frac{π}{2}$],都有f(msinθ)+f(1-m)>0成立,則實(shí)數(shù)m的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.各項(xiàng)均為正數(shù)的等差數(shù)列{an}中,a5•a8=36,則前12項(xiàng)和S12的最小值為72.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖所示,某射手射擊小球,共打9槍,每槍都擊中一個(gè)小球.球共有3串,他每次射擊必須打某一串最下面的一個(gè)小球.其中,第5槍打中A,第6槍打中B的不同射擊方法一共有12種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=-x2+ax(a∈R,b∈R),對(duì)任意實(shí)數(shù)x都有f(1-x)=f(1+x)成立,若存在x∈[-1,1]時(shí),使得f(x)-b=0有解,則實(shí)數(shù)b的取值范圍是( 。
A.(-1,0)B.[-3,1]C.(-3,1)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.圓錐的母線與底面圓的直徑均為2,則該圓錐的側(cè)面積為2π.

查看答案和解析>>

同步練習(xí)冊(cè)答案