分析 可求導(dǎo)數(shù)得到$f′(x)=\frac{4(1-{x}^{2})}{({x}^{2}+1)^{2}}$,這樣便可得出函數(shù)f(x)的單調(diào)遞增區(qū)間,而由條件函數(shù)f(x)在區(qū)間[m,m+1]上單調(diào)遞增便可得出關(guān)于m的不等式組,從而求出實數(shù)m的取值范圍.
解答 解:$f′(x)=\frac{4({x}^{2}+1)-8{x}^{2}}{({x}^{2}+1)^{2}}=\frac{4(1-{x}^{2})}{({x}^{2}+1)^{2}}$;
∴-1≤x≤1時,f′(x)≥0;
即區(qū)間[-1,1]是f(x)的單調(diào)遞增區(qū)間;
又f(x)在[m,m+1]上是單調(diào)遞增函數(shù);
∴$\left\{\begin{array}{l}{m≥-1}\\{m+1≤1}\end{array}\right.$;
∴-1≤m≤0;
即實數(shù)m的取值范圍是[-1,0].
故答案為:[-1,0].
點評 考查商的導(dǎo)數(shù)的計算公式,用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的方法,一元二次不等式的解法,以及區(qū)間的概念及數(shù)軸表示區(qū)間的方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{5}$-$\frac{2}{5}$i | B. | -$\frac{2}{5}$-$\frac{1}{5}$i | C. | $\frac{1}{5}$+$\frac{2}{5}$i | D. | $\frac{2}{5}$+$\frac{1}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | -6 | C. | -3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{10}}$ | B. | $\frac{{C}_{10}^{4}{•C}_{10}^{6}}{{C}_{16}^{10}}$ | ||
C. | $\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{7}}$ | D. | $\frac{{C}_{16}^{7}{•C}_{16}^{3}}{{C}_{16}^{10}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com