設向量
a
=(cos23°,cos67°),
b
=(cos53°,cos37°),
a
b
=( 。
A、
3
2
B、
1
2
C、-
3
2
D、-
1
2
分析:根據(jù)平面向量的數(shù)量積運算法則,由兩向量的坐標列出三角函數(shù)關系式,把67°和37°分別變?yōu)?0°-23°和90°-53°,然后利用誘導公式變形,再根據(jù)兩角和與差的余弦函數(shù)公式及特殊角的三角函數(shù)值即可得出所求式子的結果.
解答:解:∵向量
a
=(cos23°,cos67°),
b
=(cos53°,cos37°),
a
b
=cos23°cos53°+cos67°cos37°
=cos23°cos53°+cos(90°-23°)cos(90°-53°)
=cos23°cos53°+sin23°sin53°
=cos(53°-23°)
=cos30°
=
3
2

故選A
點評:此題考查了平面向量的數(shù)量積的運算,誘導公式及兩角和與差的余弦函數(shù)公式,熟練掌握法則及公式是解本題的關鍵,同時注意角度的靈活變換.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設向量
a
=(1,sinθ),
b
=(3sinθ,1),且
a
b
,則cos2θ等于( 。
A、-
1
3
B、-
2
3
C、
2
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(1,2)
,
b
=(-3,2)
,
(1)求
a
-3
b
的坐標;
(2)當k為何值時,k
a
+
b
a
-3
b
垂直?.
(3)設向量
a
b
的夾角為θ,求cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知函數(shù)f(x)=x2-mx在[1,+∞)上是單調函數(shù).
(1)求實數(shù)m的取值范圍;
(2)設向量
a
=(-sinα,2),
b
=(-2sinα,
1
2
),
c
=(cos2α,1),
d
=(1,3)
,求滿足不等式f(
a
b
)>f(
c
d
)
的α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(1,cos2θ),
b
=(2,1),
c
=(4sinθ,1),
d
=(
1
2
sinθ,1).
(1)若θ∈(0,
π
4
),求
a
b
-
c
d
的取值范圍;
(2)若θ∈[0,π),函數(shù)f(x)=|x-1|,比較f(
a
b
)與f(
c
d
)的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(sinα,
2
2
)的模為
3
2
,則cos2α=( 。

查看答案和解析>>

同步練習冊答案