已知二次函數(shù)
滿足
且
的圖像在
處的切線垂直于直線
.
(1)求
的值;
(2)若方程
有實數(shù)解,求
的取值范圍.
試題分析:本題考查導數(shù)的應用、分段函數(shù)值域以及函數(shù)圖像等基礎知識,考查轉化的思想方法,考查綜合運用數(shù)學知識分析問題解決問題的能力.第一問,考查求切線方程的解題過程,因為
,所以
是對稱軸,所以
,再利用兩直線的垂直關系列出斜率表達式,解出
;第二問,將方程根的問題轉化成求函數(shù)最值問題,再利用數(shù)形結合法解題.
試題解析: (1)∵
滿足
,∴
,
又
的圖象在
處的切線垂直于
∴
,即
∴
,
, ∴
(2)
有實數(shù)解轉化為
即
有實數(shù)解,
當
即
或
時
;
當
即
時
,
原問題等價于求函數(shù)
的值域,
易知
,
∴方程
有實數(shù)解時
的取值范圍是
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
函數(shù)
.
(Ⅰ)求
的單調區(qū)間和極值;
(Ⅱ)當
時,不等式
恒成立,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調區(qū)間;
(Ⅱ)若函數(shù)
在區(qū)間
上是減函數(shù),求實數(shù)
的最小值;
(Ⅲ)若存在
(
是自然對數(shù)的底數(shù))使
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(Ⅰ)若函數(shù)
在
處的切線垂直
軸,求
的值;
(Ⅱ)若函數(shù)
在區(qū)間
上為增函數(shù),求
的取值范圍;
(Ⅲ)討論函數(shù)
的單調性.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(m為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),函數(shù)
的最小值為1,其中
是函數(shù)f(x)的導數(shù).
(1)求m的值.
(2)判斷直線y=e是否為曲線f(x)的切線,若是,試求出切點坐標和函數(shù)f(x)的單調區(qū)間;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)
(1)若
,求
的單調區(qū)間,
(2)當
時,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(1)是否存在點
,使得函數(shù)
的圖像上任意一點P關于點M對稱的點Q也在函數(shù)
的圖像上?若存在,求出點M的坐標;若不存在,請說明理由;
(2)定義
,其中
,求
;
(3)在(2)的條件下,令
,若不等式
對
且
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
及其導數(shù)
,若存在
,使得
=
,則稱
是
的一個“巧值點”,下列函數(shù)中,有“巧值點”的函數(shù)的個數(shù)是( )
①
,②
,③
,④
,⑤
查看答案和解析>>