【題目】為了了解我市特色學校的發(fā)展狀況,某調(diào)查機構得到如下統(tǒng)計數(shù)據(jù):

年份

2014

2015

2016

2017

2018

特色學校(百個)

0.30

0.60

1.00

1.40

1.70

(Ⅰ)根據(jù)上表數(shù)據(jù),計算的相關系數(shù),并說明的線性相關性強弱(已知:,則認為線性相關性很強;,則認為線性相關性一般;,則認為線性相關性較弱);

(Ⅱ)求關于的線性回歸方程,并預測我市2019年特色學校的個數(shù)(精確到個).

參考公式: ,,,

【答案】I)相關性很強;(II208.

【解析】

(Ⅰ)求得,,利用求出的值,與臨界值比較即可得結論;(Ⅱ)結合(Ⅰ)根據(jù)所給的數(shù)據(jù),利用公式求出線性回歸方程的系數(shù),再根據(jù)樣本中心點一定在線性回歸方程上,求出的值,寫出線性回歸方程; 代入線性回歸方程求出對應的的值,可預測地區(qū)2019年足球特色學校的個數(shù).

(Ⅰ),,

線性相關性很強.

(Ⅱ) ,

關于的線性回歸方程是.

時,(百個),

地區(qū)2019年足球特色學校的個數(shù)為208個.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)學院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關于晝夜溫差的線性回歸方程;

(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會所得線性回歸方程是否理想?

參考公式:回歸直線的方程,

其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,對任意滿足,且,數(shù)列滿足,其前9項和為63.

(1)求數(shù)列的通項公式;

(2)令,數(shù)列的前項和為,若對任意正整數(shù),都有,求實數(shù)的取值范圍;

(3)將數(shù)列的項按照為奇數(shù)時,放在前面;當為偶數(shù)時,放在前面的要求進行交叉排列,得到一個新的數(shù)列:,求這個新數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是由非負整數(shù)組成的無窮數(shù)列,該數(shù)列前n項的最大值記為An , 第n項之后各項an+1 , an+2…的最小值記為Bn , dn=An﹣Bn
(1)若{an}為2,1,4,3,2,1,4,3…,是一個周期為4的數(shù)列(即對任意n∈N* , an+4=an),寫出d1 , d2 , d3 , d4的值;
(2)設d是非負整數(shù),證明:dn=﹣d(n=1,2,3…)的充分必要條件為{an}是公差為d的等差數(shù)列;
(3)證明:若a1=2,dn=1(n=1,2,3,…),則{an}的項只能是1或者2,且有無窮多項為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是(寫出所有正確命題的編號).
①當0<CQ< 時,S為四邊形
②當CQ= 時,S為等腰梯形
③當CQ= 時,S與C1D1的交點R滿足C1R=
④當 <CQ<1時,S為六邊形
⑤當CQ=1時,S的面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位實行職工值夜班制度,已知名職工每星期一到星期五都要值一次夜班,且沒有兩人同時值夜班,星期六和星期日不值夜班,若昨天值夜班,從今天起至少連續(xù)天不值夜班,星期四值夜班,則今天是星期幾(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,現(xiàn)給出如下結論:

; ; .

其中正確結論的序號為(

A. ②③ B. ①④ C. ②④ D. ①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bln x在x=1處有極值.

(1)求a,b的值;

(2)求函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓C: =1(a>b>0)的離心率為 ,其左焦點到點P(2,1)的距離為 ,不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.

(1)求橢圓C的方程;
(2)求△APB面積取最大值時直線l的方程.

查看答案和解析>>

同步練習冊答案