18.已知函數(shù)$f(x)={cos^2}x+\sqrt{3}sinxcosx+1$.
(1)若x∈R,求f(x)的最小正周期和最值;
(2)若0<x<π,求這個函數(shù)的單調(diào)區(qū)間.

分析 (1)利用二倍角公式以及兩角和與差的三角函數(shù)化簡函數(shù)的解析式,然后求解函數(shù)的周期以及函數(shù)的最值.
(2)利用正弦函數(shù)的單調(diào)區(qū)間,轉化求解即可.

解答 解:(1)$y={cos^2}x+\sqrt{3}sinxcosx+1=\frac{cos2x+1}{2}+\frac{{\sqrt{3}sin2x}}{2}+1=\frac{1}{2}cos2x+\frac{{\sqrt{3}}}{2}sin2x+\frac{1}{2}+1$=$sin\frac{π}{6}cos2x+cos\frac{π}{6}sin2x+\frac{3}{2}=sin({2x+\frac{π}{6}})+\frac{3}{2}$.
函數(shù)的最小正周期:π;最大值為:$\frac{5}{2}$,最小值為:$\frac{1}{2}$.
(2)因為函數(shù)y=sinx的單調(diào)遞增區(qū)間為$[{-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ}]({k∈Z})$,
由(1)知$y=sin({2x+\frac{π}{6}})+\frac{3}{2}$,故$-\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ({k∈Z})$,
∴$-\frac{π}{3}+kπ≤x≤\frac{π}{6}+kπ({k∈Z})$,
故函數(shù)$y=sin({2x+\frac{π}{6}})+\frac{3}{2},0<x<π$的單調(diào)遞增區(qū)間為$({0,\frac{π}{6}}]$和$[{\frac{2π}{3},π})$;
單調(diào)遞減區(qū)間為$[{\frac{π}{6},\frac{2π}{3}}]$.

點評 本題考查兩角和與差的三角函數(shù),三角函數(shù)的最值的求法正確的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.某學校為了提高學生綜合素質、樹立社會主義榮辱觀、發(fā)展創(chuàng)新能力和實踐能力、促進學生健康成長,開展評選“校園之星”活動.規(guī)定各班每10人推選一名候選人,當各班人數(shù)除以10的余數(shù)大于7時再增選一名候選人,那么,各班可推選候選人人數(shù)y與該班人數(shù)x之間的函數(shù)關系用取整函數(shù)y=[x]([x]表示不大于x的最大整數(shù))可以表示為( 。
A.y=[$\frac{x}{10}$]B.y=[$\frac{x+2}{10}$]C.y=[$\frac{x+3}{10}$]D.y=[$\frac{x+4}{10}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合A={x∈N|(x+1)(2-x)≥0},B{y|y=2x,x∈R},則A∩B=(  )
A.{x|0<x≤2}B.{0,1,2}C.{1,2}D.{1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1=2,a2=3,an+2=3an+1-2an(n∈N*);
(1)求a3,a4,a5;
(2)用歸納法猜想它的一個通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設M、N分別是直線11:kx+y-k-4=0與直線l2:x-ky+2=0所過的兩個定點,Q為線段MN的中點,P為直線11與直線l2的交點,則|PQ|=( 。
A.$\frac{5}{2}$B.2C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.計算
(1)$\frac{1-2i}{3+4i}$  
(2)$\frac{{2-\sqrt{3}i}}{{2+\sqrt{3}i}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)是R上的奇函數(shù),對于?x∈(0,+∞),都有f(x+2)=-f(x)且x∈(0,1]時f(x)=2x+1,則f(-2014)+f(2015)的值為(  )
A.0B.1C.2D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的體積等于(  )
A.6+6πB.6+8πC.8+6πD.8+8π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在三棱錐P-ABC中,△PAC和△PBC是邊長為$\sqrt{2}$的等邊三角形,AB=2,O是AB中點,E是BC中點.
(Ⅰ)求證:平面PAB⊥平面ABC;
(Ⅱ)求直線PB與平面PAC所成角的正弦值的大;
(Ⅲ)在棱PB上是否存在一點F,使得B-OF-E的余弦值為$\frac{{\sqrt{6}}}{6}$?若存在,指出點F在PB上的位置;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案