精英家教網(wǎng)棱長為a的正方體ABCD-A1B1C1D1中,EF是異面直線AC與AD1的公垂線,
求證:EF∥BD1
分析:建立空間直角坐標系,設(shè)出點的坐標,得出向量坐標,證明
BD1
EF
,可得結(jié)論.
解答:精英家教網(wǎng)證明:如圖,以D為原點建立空間直角坐標系D-xyz,
設(shè)正方體的棱長為a,則A1(a,0,a),D(0,0,0),A(a,0,0),C(0,a,0),B(a,a,0),D1(0,0,a),
DA
1
=(a,0,a),
AC
=(-a,a,0),
BD
1
=(-a,-a,a).
∵EF是直線AC與A1D的公垂線.
EF
DA
1
,
EF
AC

設(shè)
EF
=(x,y,z),
EF
DA
1
=(x,y,z)•(a,0,a)=ax+az=0,
EF
AC
=(x,y,z)•(-a,a,0)=-ax+ay=0.
∵a≠0,∴x=y=-z.
EF
=(x,x,-x),∴
BD
1
=-
a
x
EF
,
BD1
EF
,
∴EF∥BD1
點評:本題考查線線平行,考查向量知識的運用,正確確定向量坐標是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(1)某工廠準備在倉庫的一側(cè)建立一個矩形儲料場(如圖1),現(xiàn)有50米長的鐵絲網(wǎng),如果用它來圍成這個儲料場,那么長和寬各是多少時,這個儲料場的面積最大?并求出這個最大的面積.
(2)如圖2,已知AB、DE是圓O的直徑,AC是弦,AC∥DE,求證CE=EB.
(3)如圖3所示的棱長為a的正方體中:①求CD1和AB所成的角的度數(shù);②求∠B1BD1的正弦值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在棱長為a的正方體ABCD-A1B1C1D1中,M為A1D中點,N為AC中點.
(1)求異面直線MN和AB所成的角;
(2)求點M到平面BB1D1D之距.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在棱長為a的正方體ABCD-A1B1C1D1中,P是C1B1的中點,若E,F(xiàn)都是AB上的點,且|EF|=
a2
,Q是A1B1上的點,則四面體EFPQ的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2001•上海)在棱長為a的正方體OABC-O′A′B′C′中,E、F分別是棱AB、BC上的動點,且AE=BF.
(Ⅰ)求證:A′F⊥C′E;
(Ⅱ)當三棱錐B′-BEF的體積取得最大值時,求二面角B′-EF-B的大。ńY(jié)果用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在空間直角坐標系中,有一棱長為a的正方體ABCO-A′B′C′D′,A′C的中點E與AB的中點F的距離為( 。

查看答案和解析>>

同步練習冊答案