【題目】函數(shù)f(x)= 是定義在區(qū)間(﹣1,1)上的奇函數(shù),且f(2)= ,
(1)確定函數(shù)f(x)的解析式;
(2)用定義法證明f(x)在區(qū)間(﹣1,1)上是增函數(shù);
(3)解不等式f(t﹣1)+f(t)<0.
【答案】
(1)解:∵函數(shù)f(x)= 是定義在區(qū)間(﹣1,1)上的奇函數(shù),
∴f(﹣x)=﹣f(x),
∴ =﹣ ,
∴b=﹣b,
∴b=0
又∵f(2)= = ,
∴a=1,
∴函數(shù)f(x)=
(2)解:證法一:設任意﹣1<x1<x2<1,
∴x1﹣x2<0,1﹣x1x2>0,
∴f(x1)﹣f(x2)= ﹣
=
∴f(x1)<f(x2)
∴f(x)在區(qū)間(﹣1,1)上是增函數(shù)
證法二:∵函數(shù)f(x)= ,
∴f′(x)= ,
當x∈(﹣1,1)時,
f′(x)>0恒成立,
∴f(x)在區(qū)間(﹣1,1)上是增函數(shù)
(3)解:由題意知f(t﹣1)+f(t)<0
∴f(t﹣1)<﹣f(t)
∴f(t﹣1)<f(﹣t)
∴﹣1<t﹣1<﹣t<1
∴0<t<
【解析】(1)由函數(shù)f(x)= 是定義在區(qū)間(﹣1,1)上的奇函數(shù),且f(2)= ,求出a,b的值,可得函數(shù)f(x)的解析式;(2)證法一:設任意﹣1<x1<x2<1,求出f(x1)﹣f(x2),并判斷符號,進而根據(jù)函數(shù)單調(diào)性的定義得到f(x)在區(qū)間(﹣1,1)上是增函數(shù);證法二:求導,并分析出當x∈(﹣1,1)時,f′(x)>0恒成立,進而得到f(x)在區(qū)間(﹣1,1)上是增函數(shù)(3)不等式f(t﹣1)+f(t)<0可化為:﹣1<t﹣1<﹣t<1,解得答案.
【考點精析】解答此題的關鍵在于理解函數(shù)單調(diào)性的判斷方法的相關知識,掌握單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較,以及對利用導數(shù)研究函數(shù)的單調(diào)性的理解,了解一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|lgx|﹣( )x有兩個零點x1 , x2 , 則有( )
A.x1x2<0
B.x1x2=1
C.x1x2>1
D.0<x1x2<1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結束.除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是.假設各局比賽結果相互獨立.
(1)分別求甲隊以3:0,3:1,3:2獲勝的概率;
(2)若比賽結果為3:0或3:1,則勝利方得3分、對方得0分;若比賽結果為3:2,則勝利方得2分、對方得1分.求甲隊得分X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】連續(xù)2次拋擲﹣枚骰子(六個面上分別標有數(shù)字1,2,3,4,5,6).則事件“兩次向上的數(shù)字之和等于7”發(fā)生的概率為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義“正對數(shù)”: ,現(xiàn)有四個命題:
①若,則
②若,則
③若,則
④若,則
其中的真命題有:____________ (寫出所有真命題的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=mx﹣1 , g(x)=﹣1+logmx(m>0,m≠1),有如下兩個命題:
p:f(x)的定義域和g[f(x)]的值域相等.
q:g(x)的定義域和f[g(x)]的值域相等.
則( )
A.命題p,q都正確
B.命題p正確,命題q不正確
C.命題p,q都不正確
D.命題q不正確,命題p正確
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017唐山三模】已知函數(shù), .
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間有唯一零點,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)設拋物線的頂點在坐標原點,焦點在軸正半軸上,過點的直線交拋物線于兩點,線段的長是,的中點到軸的距離是.
(1)求拋物線的標準方程;
(2)在拋物線上是否存在不與原點重合的點,使得過點的直線交拋物線于另一點,滿足,且直線與拋物線在點處的切線垂直?并請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為3萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)= ,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)甲廠生產(chǎn)多少臺新產(chǎn)品時,可使盈利最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com