17.已知線段AB的端點B的坐標為(m,n),端點A在圓C:(x+1)2+y2=4上運動,且線段AB的中點M的軌跡方程為(x-$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=1,則m+n等于(  )
A.-1B.7C.1D.-7

分析 設線段AB中點M(x,y),A(x1,y1),由題意知:2x=m+x1,2y=n+y1,故x1=2x-m,y1=2y-n,由點A在圓(x+1)2+y2=4上運動,能求出點M的軌跡方程,與線段AB的中點M的軌跡方程為(x-$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=1比較,即可求出m+n.

解答 解:設線段AB中點M(x,y),A(x1,y1),
由題意知:2x=m+x1,2y=n+y1,
∴x1=2x-m,y1=2y-n
∵點A在圓(x+1)2+y2=4上運動,
∴(2x-m+1)2+(2y-n)2=4,
∵線段AB的中點M的軌跡方程為(x-$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=1
∴-m+1=-3,n=3,
∴m+n=7.
故選∬:B.

點評 本題考查線段的中點的軌跡方程的求法,考查代入法的運用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知F1,F(xiàn)2分別為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,B為橢圓上頂點,△BF1F2為正三角形,且P為橢圓上一點,A(0,2$\sqrt{2}$)為橢圓外一點,|PA|-|PF2|的最小值為-1,過點F2且垂直于x軸的直線交橢圓于C,D,直線l1:y=mx+n與圓x2+y2=3相切并且交橢圓于M,N(M,N在直線CD的兩側)兩點.
(1)求橢圓的方程.
(2)當四邊形CMDN的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設數(shù)列{an}的前n項和為Sn,且有a1=1,2Sn=(n+1)an,n∈N*
(1)求an;
(2)求數(shù)列{$\frac{1}{{S}_{n}}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=xetx-ex+1,其中t∈R,e是自然對數(shù)的底數(shù).
(Ⅰ)若方程f(x)=1無實數(shù)根,求實數(shù)t的取值范圍;
(Ⅱ)若函數(shù)f(x)在(0,+∞)內(nèi)為減函數(shù),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.有一枚質地均勻的正四面體骰子,四個表面分別寫作1、2、3、4的數(shù)字,規(guī)定“拋擲該枚骰子得到的數(shù)字是該拋擲后落在底面的那一個數(shù)字”,已知b和c是先后拋擲該枚骰子得到的數(shù)字,函數(shù)f(x)=x2+bx+c(x∈R).
(1)若b=3,求函數(shù)f(x)有零點的概率;
(2)求函數(shù)f(x)在區(qū)間(-2,+∞)上單調遞增的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.n件產(chǎn)品中有m件正品,現(xiàn)從中先后任取2件(第一次取出的產(chǎn)品不放回),令“第一次取到正品”為A,“第二次取到正品”為B,則P(B|A)=$\frac{m-1}{n-1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y+1≥0}\\{3x-y-5≤0}\\{\;}\end{array}\right.$,則x2+y2的最小值為( 。
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.定義在R上的偶函數(shù),f(x)滿足:對任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,則當n∈N*時,f(-n),f(n-1),f(n+1)的大小關系為f(n-1)>f(-n)>f(n+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)的定義域為{x|x∈R,且x≠0},若對任意的x都有f(x)+f(-x)=0,當x>0時,f(x)=log2x,則不等式f(x)>1的解集為(  )
A.(2,+∞)B.(1,+∞)C.($-\frac{1}{2}$,0)∪(2,+∞)D.(-1,0)∪(1,+∞)

查看答案和解析>>

同步練習冊答案