已知數(shù)列{an}滿足a1=15,且an+1-an=2n,則
an
n
的最小值為
27
4
27
4
分析:利用疊加法求數(shù)列的通項(xiàng),再根據(jù)基本不等式,即可求得
an
n
的最小值.
解答:解:∵a1=15,an+1-an=2n,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=15+2+4+…+2(n-1)=15+2×
(n-1)n
2
=n2-n+15
an
n
=n+
15
n
-1
∵函數(shù)在[1,3]上單調(diào)遞減,在[4,+∞)上單調(diào)遞增
∵n=3時(shí),
an
n
=3+5-1=7;n=4時(shí),
an
n
=4+
15
4
-1=
27
4

an
n
的最小值為
27
4

故答案為:
27
4
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查疊加法的運(yùn)用,考查函數(shù)的單調(diào)性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案