若函數(shù)f(a)=
a
0
(2+sinx)dx,則f(f(
π
2
))=(  )
A、1B、0
C、2π+3+cos1D、1-cos1
分析:根據(jù)定積分的求法可得f(a)的式子,得到f=π+1代入得到f即可.
解答:解:∵f(a)=
a
0
(2+sinx)dx=(2x-cosx)|0a
∴f(
π
2
)=π+1,
∴f(f(
π
2
))=f(π+1)=2(π+1)-cos(π+1)+1=2π+cos1+3.
故選C.
點評:考查學(xué)生求定積分的能力.以及對函數(shù)解析式的認識能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
a•2x-a-12x-1
為奇函數(shù).
(1)求函數(shù)的定義域;          
(2)確定實數(shù)a的值;
(3)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+2(a+1)x+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)滿足(1)當m,n∈R時,f(m+n)=f(m)•f(n);(2)f(0)≠0;(3)當x<0時,f(x)>1,則在下列結(jié)論中:
①f(a)•f(-a)=1;
②f(x)在R上是遞減函數(shù);
③存在x0,使f(x0)<0;
④若f(2)=
2
,則f(
1
4
)=
1
4
,f(
1
6
)=
1
6

正確結(jié)論的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+x2-2x-2正整數(shù)為零點附近的函數(shù)值用二分法計算,其參考數(shù)據(jù)如下:
f(1)=-2,f(1.5)=0.65,f(1.25)=-0.984,f(1.375)=-0.260,f(1.4375)=0.162.f(1.40625)=-0.054.
則方程x3+x2-2x-2=0的一個近似值(精確到0.1)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•濰坊二模)已知函數(shù)f(x)=a(x-
1
x
)-2lnx,g(x)=x2
(I)若函數(shù)f(x)在其定義域上為增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)與g(x)的圖象在其一公共點處存在公切線,證明:a=2e
a2
8
-1

查看答案和解析>>

同步練習(xí)冊答案