A. | (-∞,1) | B. | (-∞,3) | C. | (-1,2) | D. | (-2,1) |
分析 根據(jù)題意,令g(x)=f(x)-2,則g(x)=f(x)-2=-2x5-x3-7x,分析可得g(x)的奇偶性與單調(diào)性,則f(a2)+f(a-2)>4,可以轉(zhuǎn)化為g(a2)>-g(a-2),結(jié)合函數(shù)的奇偶性與單調(diào)性分析可得a2<2-a,解可得a的范圍,即可得答案.
解答 解:根據(jù)題意,令g(x)=f(x)-2,
則g(x)=f(x)-2=-2x5-x3-7x,
g(-x)=-2(-x)5-(-x)3-7(-x)=-(-2x5-x3-7x),則g(x)為奇函數(shù),
而g(x)=-2x5-x3-7x,則g′(x)=-10x4-2x2-7<0,則g(x)為減函數(shù),
若f(a2)+f(a-2)>4,則有f(a2)-2>-[f(a-2)-2],
即g(a2)>-g(a-2),
即g(a2)>g(2-a),
則有a2<2-a,
解可得-2<a<1,
即a的取值范圍是(-2,1);
故選:D.
點(diǎn)評(píng) 本題考查函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,關(guān)鍵是構(gòu)造函數(shù),進(jìn)而分析該函數(shù)的奇偶性、單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 3 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {3,4} | C. | (-1,2) | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com