精英家教網 > 高中數學 > 題目詳情

【題目】綜合題。
(1)已知f( +1)=x+2 ,求f(x)的解析式;
(2)已知f(x)是一次函數,且滿足3f(x+1)﹣2f(x﹣1)=2x+17,求f(x)的解析式.

【答案】
(1)解: = ;

∴f(x)=x2﹣1,x≥1


(2)解:設f(x)=kx+b,則:

f(x+1)=kx+b+k,f(x﹣1)=kx+b﹣k;

∴3f(x+1)﹣2f(x﹣1)=kx+b+5k=2x+17;

;

∴k=2,b=7;

∴f(x)=2x+7


【解析】(1)可由條件得到 ,這樣 換上x即可求出f(x)的解析式;(2)待定系數法,設f(x)=kx+b,便可由3f(x+1)﹣2f(x﹣1)=2x+17得出kx+b+5k=2x+17,從而可求出k,b,即得出f(x)的解析式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知三棱柱的所有棱長都相等,且側棱垂直于底面,沿棱柱側面經過棱到點的最短路線長為,設這條最短路線與的交點為

(1)求三棱柱的體積;

(2)證明:平面平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為奇函數, 為常數.

(1)確定的值;

(2)求證: 上的增函數;

(3)若對于區(qū)間上的每一個值,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有一種新型的洗衣液,去污速度特別快.已知每投放個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間 (分鐘) 變化的函數關系式近似為,其中.根據經驗,當水中洗衣液的濃度不低于4(/升)時,它才能起到有效去污的作用.

1若投放個單位的洗衣液,3分鐘時水中洗衣液的濃度為4 (/),的值;

2)若投放4個單位的洗衣液,則有效去污時間可達幾分鐘?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是正方形,側棱底面, , 的中點,過點作于點.

(1)證明: 平面;

(2)證明: 平面;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數),當點是函數圖象上的點時,點是函數圖象上的點.

(1)寫出函數的解析式;

(2)把的圖象向左平移個單位得到的圖象,函數,是否存在實數,使函數的定義域為,值域為.如果存在,求出的值;如果不存在,說明理由;

(3)若當時,恒有,試確定的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐P-ABCD的體積為,其三視圖如圖所示,其中正視圖為等腰三角形,側視圖為直角三角形,俯視圖是直角梯形.

(1)求正視圖的面積;

(2)求四棱錐P-ABCD的側面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓E的右焦點與拋物線y2=4x的焦點重合,點M 在橢圓E上. (Ⅰ)求橢圓E的標準方程;
(Ⅱ)設P(﹣4,0),直線y=kx+1與橢圓E交于A,B兩點,若直線PA,PB關于x軸對稱,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數g(x)的圖象,若函數g(x)在區(qū)間[0, ]上單調遞增,則φ的取值范圍是(
A.[ , ]
B.[
C.[ , ]
D.[ ]

查看答案和解析>>

同步練習冊答案