【題目】綜合題。
(1)已知f( +1)=x+2 ,求f(x)的解析式;
(2)已知f(x)是一次函數,且滿足3f(x+1)﹣2f(x﹣1)=2x+17,求f(x)的解析式.
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱柱的所有棱長都相等,且側棱垂直于底面,由沿棱柱側面經過棱到點的最短路線長為,設這條最短路線與的交點為.
(1)求三棱柱的體積;
(2)證明:平面平面.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數為奇函數, 為常數.
(1)確定的值;
(2)求證: 是上的增函數;
(3)若對于區(qū)間上的每一個值,不等式恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一種新型的洗衣液,去污速度特別快.已知每投放(且)個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間 (分鐘) 變化的函數關系式近似為,其中.根據經驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(1)若投放個單位的洗衣液,3分鐘時水中洗衣液的濃度為4 (克/升),求的值;
(2)若投放4個單位的洗衣液,則有效去污時間可達幾分鐘?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數(且),當點是函數圖象上的點時,點是函數圖象上的點.
(1)寫出函數的解析式;
(2)把的圖象向左平移個單位得到的圖象,函數,是否存在實數,使函數的定義域為,值域為.如果存在,求出的值;如果不存在,說明理由;
(3)若當時,恒有,試確定的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P-ABCD的體積為,其三視圖如圖所示,其中正視圖為等腰三角形,側視圖為直角三角形,俯視圖是直角梯形.
(1)求正視圖的面積;
(2)求四棱錐P-ABCD的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E的右焦點與拋物線y2=4x的焦點重合,點M 在橢圓E上. (Ⅰ)求橢圓E的標準方程;
(Ⅱ)設P(﹣4,0),直線y=kx+1與橢圓E交于A,B兩點,若直線PA,PB關于x軸對稱,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數g(x)的圖象,若函數g(x)在區(qū)間[0, ]上單調遞增,則φ的取值范圍是( )
A.[ , ]
B.[ , )
C.[ , ]
D.[ , ]
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com