在無窮數(shù)列中,,對于任意,都有,. 設(shè), 記使得成立的的最大值為.
(1)設(shè)數(shù)列為1,3,5,7,,寫出,,的值;
(2)若為等差數(shù)列,求出所有可能的數(shù)列;
(3)設(shè),,求的值.(用表示)
(1),,;(2);(3).
解析試題分析:(1)根據(jù)使得成立的的最大值為,,則,,則,,則,這樣就寫出,,的值;(2)若為等差數(shù)列,先判斷,再證明,即可求出所有可能的數(shù)列;(3)確定,,依此類推,發(fā)現(xiàn)規(guī)律,得出,從而求出的值.
(1) ,,. 3分
(2)由題意,得,
結(jié)合條件,得. 4分
又因為使得成立的的最大值為,使得成立的的最大值為,
所以,. 5分
設(shè),則.
假設(shè),即,
則當時,;當時,.
所以,.
因為為等差數(shù)列,
所以公差,
所以,其中.
這與矛盾,
所以. 6分
又因為,
所以,
由為等差數(shù)列,得,其中. 7分
因為使得成立的的最大值為,
所以,
由
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足().
(1)若數(shù)列是等差數(shù)列,求數(shù)列的前項和;
(2)證明:數(shù)列不可能是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項數(shù)列中,其前項和為,且.
(1)求數(shù)列的通項公式;
(2)設(shè)是數(shù)列的前項和,是數(shù)列的前項和,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=,數(shù)列{an}滿足:2an+1-2an+an+1an=0且an≠0.數(shù)列{bn}中,b1=f(0)且bn=f(an-1).
(1)求證:數(shù)列是等差數(shù)列;
(2)求數(shù)列{|bn|}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè){an}是公比為正數(shù)的等比數(shù)列,a1=2,a3=a2+4.
(1)求{an}的通項公式.
(2)設(shè){bn}是首項為1,公差為2的等差數(shù)列,求{an+bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項都為正數(shù),。
(1)若數(shù)列是首項為1,公差為的等差數(shù)列,求;
(2)若,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com