已知函數(shù)f(x)=cosx
(1)當(dāng)x時,化簡f(x)的解析式;
(2)當(dāng)x時,求函數(shù)f(x)的值域.
【答案】分析:(1)根據(jù)x,cosx>0,sinx<0,化簡函數(shù)f(x)的解析式為sin(x-).
(2)當(dāng)x時,化簡函數(shù)f(x)的解析式為 cos(x+),根據(jù) x+∈(,),求得-1≤cos(x+)<-,從而求得函數(shù)f(x)的值域.
解答:解:(1)∵當(dāng)x時,cosx>0,sinx<0,
∴函數(shù)f(x)=cosx=
=1+sinx-(1+cosx)=sinx-cosx=sin(x-).
(2)當(dāng)x時,函數(shù)f(x)=cosx=
=-(1+sinx)+(1+cosx)=cosx-sinx=cos(x+).
 x+∈(,),∴-1≤cos(x+)<-,∴-cos(x+)<-1,
故函數(shù)f(x)的值域為[-,-1 ).
點評:本題主要考查同角三角函數(shù)的基本關(guān)系、余弦函數(shù)的定義域和值域,以及三角函數(shù)在各個象限中的符號,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x+
1
x
|,x≠0
0     x=0
,則關(guān)于x的方程f2(x)+bf(x)+c=0有5個不同實數(shù)解的充要條件是( 。
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)已知△ABC內(nèi)角A、B、C的對邊分別為a、b、c,滿足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),則實數(shù)b的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象如圖所示,則函數(shù)的值域為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(0)≥2,f(1)≥2,方程f(x)=0在區(qū)間(0,1)上有兩個實數(shù)根,則實數(shù)a的取值范圍為
(4,+∞)
(4,+∞)

查看答案和解析>>

同步練習(xí)冊答案