【題目】已知函數(shù)f(x)=
(1)判斷f(x)在(0,+∞)的單調性;
(2)若x>0,證明:(ex﹣1)ln(x+1)>x2

【答案】
(1)解:由函數(shù)f(x)的定義域為(﹣1,0)∪(0,+∞)

∴f′(x)= ,

設g(x)= ﹣ln(1+x),

∴g′(x)= = <0,

∴g(x)在(0,+∞)為減函數(shù),

∴g(x)<g(0)=0,

∴f′(x)<0,

∴f(x)在(0,+∞)為減函數(shù)


(2)解:(ex﹣1)ln(x+1)>x2等價于 ,

= = ,

∴原不等式等價于 ,

由(1)知,f(x)= 是(0,+∞)上的減函數(shù),

∴要證原不等式成立,只需要證明當x>0時,x<ex﹣1,

令h(x)=ex﹣x﹣1,

∴h′(x)=ex﹣1>0,

∴h(x)是(0,+∞)上的增函數(shù),

∴h(x)>h(0)=0,

即x<ex﹣1,

∴f(x)>f(ex﹣1),

=> ,

故(ex﹣1)ln(x+1)>x2


【解析】(1)根據導數(shù)和函數(shù)單調性的關系,以及導數(shù)和最值得關系即可求出;(2)原不等式等價于 ,要證原不等式成立,只需要證明當x>0時,x<ex﹣1,令h(x)=ex﹣x﹣1,利用導數(shù)和最值得關系即可證明.
【考點精析】通過靈活運用利用導數(shù)研究函數(shù)的單調性,掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在( n的展開式中,第6項為常數(shù)項.
(1)求n;
(2)求含x2項的系數(shù);
(3)求展開式中所有的有理項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列3個命題:
(1)函數(shù)f(x)在x>0時是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
(2)若函數(shù)f(x)=ax2+bx+2與x軸沒有交點,則b2﹣8a<0且a>0;
(3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).
其中正確命題的個數(shù)是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對任意的實數(shù)x∈[ ],都有f(x)﹣2mx≤1成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年年底,某商業(yè)集團根據相關評分標準,對所屬20家商業(yè)連鎖店進行了年度考核評估,并依據考核評估得分(最低分60分,最高分100分)將這些連鎖店分別評定為A,B,C,D四個類型,其考核評估標準如下表:

評估得分

[60,70

[70,80

[80,90

[90,100]

評分類型

D

C

B

A

考核評估后,對各連鎖店的評估分數(shù)進行統(tǒng)計分析,得其頻率分布直方圖如下:

Ⅰ)評分類型為A的商業(yè)連鎖店有多少家;

Ⅱ)現(xiàn)從評分類型為A,D的所有商業(yè)連鎖店中隨機抽取兩家做分析,求這兩家來自同一評分類型的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設奇函數(shù)定義在上,其導函數(shù)為,當時, ,則不等式的解集為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學生中抽出40名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:

觀察圖形,回答下列問題:

(1)估計這次環(huán)保知識競賽成績的中位數(shù);

(2)從成績是80分以上(包括80分)的學生中選兩人,求他們在同一分數(shù)段的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)若函數(shù)上為減函數(shù),求實數(shù)的最小值;

2)若存在,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型超市擬對店慶當天購物滿元的顧客進行回饋獎勵.規(guī)定:顧客轉動十二等分且質地均勻的圓形轉盤(如圖),待轉盤停止轉動時,若指針指向扇形區(qū)域,則顧客可領取此區(qū)域對應面額(單位:元)的超市代金券.假設轉盤每次轉動的結果互不影響.

(Ⅰ)若求顧客轉動一次轉盤獲得元代金券的概率;

(Ⅱ)某顧客可以連續(xù)轉動兩次轉盤并獲得相應獎勵,當時,求該顧客第一次獲得代金券的面額不低于第二次獲得代金券的面額的概率;

記顧客每次轉動轉盤獲得代金券的面額為,當取何值時, 的方差最小?

(結論不要求證明)

查看答案和解析>>

同步練習冊答案