【題目】在直角坐標(biāo)平面上的一列點(diǎn)簡記為,若由構(gòu)成的數(shù)列滿足,(其中是與軸正方向相同的單位向量),則稱為“點(diǎn)列”.

1)試判斷:...是否為“點(diǎn)列”?并說明理由.

2)若為“點(diǎn)列”,且點(diǎn)在點(diǎn)的右上方.任取其中連續(xù)三點(diǎn),判斷的形狀(銳角,直角,鈍角三角形),并證明.

3)若為“點(diǎn)列”,正整數(shù)滿足:,且,求證:.

【答案】1)是“點(diǎn)列”,理由見解析;(2)鈍角三角形,證明見解析;(3)證明見解析

【解析】

1)根據(jù)所給的個(gè)點(diǎn)的坐標(biāo),觀察出數(shù)列的通項(xiàng)公式,把數(shù)列的通項(xiàng)代入新定義的數(shù)列,驗(yàn)證數(shù)列滿足,得到點(diǎn)列的結(jié)論.
2)用所給的三個(gè)點(diǎn)構(gòu)造三個(gè)向量,寫出三個(gè)向量的坐標(biāo),問題轉(zhuǎn)化為向量夾角的大小問題,判斷出兩個(gè)向量的數(shù)量積小于零,得到兩個(gè)向量所成的角是鈍角,得到結(jié)果.
3)本題是要求判斷兩組向量的數(shù)量積的大小,根據(jù)兩個(gè)數(shù)列各自的項(xiàng)之間的大小關(guān)系,即可得到向量的數(shù)量積之間的關(guān)系.

解:(1)由題意可知

,
,



點(diǎn)列;
2)在中,
,
,
∵點(diǎn)在點(diǎn)的右上方,
,
點(diǎn)列,
,
,則

為鈍角,
為鈍角三角形;
3,


同理
由于點(diǎn)列,于是
由①、②、③、④可推得,

又由(1)知

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連結(jié)圓周上九個(gè)不同點(diǎn)的36條弦要么染成紅色,要么染成藍(lán)色,我們稱它們?yōu)?/span>紅邊藍(lán)邊”.假定由這九個(gè)點(diǎn)中每三個(gè)點(diǎn)為頂點(diǎn)的三角形中都含有紅邊”.證明:這九個(gè)點(diǎn)中存在四個(gè)點(diǎn),兩兩連結(jié)的六條邊都是紅邊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,ACBCAC=BC=,O,M分別為ABVA的中點(diǎn).

1)求證:VB∥平面MOC;

2)求證:平面MOC⊥平面VAB

3)求三棱錐V-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體,關(guān)于其結(jié)構(gòu)特征,下列說法不正確的是

A. 該幾何體是由兩個(gè)同底的四棱錐組成的幾何體

B. 該幾何體有12條棱、6個(gè)頂點(diǎn)

C. 該幾何體有8個(gè)面,并且各面均為三角形

D. 該幾何體有9個(gè)面,其中一個(gè)面是四邊形,其余均為三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面 ,且

1證明:平面平面

2若直線與平面所成的角為,求二面角

的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)口袋有個(gè)白球,個(gè)黑球,這些球除顏色外全部相同,現(xiàn)將口袋中的球隨機(jī)逐個(gè)取出,并依次放入編號為,,的抽屜內(nèi).

(1)求編號為的抽屜內(nèi)放黑球的概率;

(2)口袋中的球放入抽屜后,隨機(jī)取出兩個(gè)抽屜中的球,求取出的兩個(gè)球是一黑一白的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分) 如圖,的外接圓的半徑為,所在的平面,,,且

1)求證:平面ADC平面BCDE

2)試問線段DE上是否存在點(diǎn)M,使得直線AM與平面ACD所成角的正弦值為?若存在,

確定點(diǎn)M的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中正確的是(

A.半圓弧以其直徑為軸旋轉(zhuǎn)一周所形成的曲面叫做球

B.直角三角形繞一直角邊為軸旋轉(zhuǎn)一周得到的旋轉(zhuǎn)體是圓錐

C.夾在圓柱的兩個(gè)平行截面間的幾何體還是一個(gè)旋轉(zhuǎn)體

D.用一個(gè)平面截圓錐底面與截面組成的部分是圓臺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABCABBC,PAABBC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).

(1)求證:PABD

(2)求證:平面BDE平面PAC;

(3)當(dāng)PA平面BDE時(shí),求三棱錐EBCD的體積.

查看答案和解析>>

同步練習(xí)冊答案