設{an}是遞增的等比數(shù)列,a2=2,a4-a3=4,則數(shù)列{an}的前n項和Sn=
2n-1
2n-1
分析:利用等比數(shù)列的通項公式和前n項和公式即可得出.
解答:解:設等比數(shù)列{an}的公比為q,∵a2=2,a4-a3=4,∴
a1q=2
a1q3-a1q2=4
,解得
a1=1
q=2
a1=-2
q=-1

∵{an}是遞增的等比數(shù)列,∴
a1=-2
q=-1
舍去.
a1=1
q=2
,∴Sn=
2n-1
2-1
=2n-1

故答案為2n-1.
點評:本題考查了等比數(shù)列的通項公式和前n項和公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且an與1的等差中項等于Sn與1的等比中項.
(1)求a1的值及數(shù)列{an}的通項公式;
(2)設bn=
2
1+an
 
+(-1)n-1×2n+1λ
,若數(shù)列{bn}是單調(diào)遞增數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•威海一模)設{an}是單調(diào)遞增的等差數(shù)列,Sn為其前n項和,且滿足4S3=S6,a2+2是a1,a13的等比中項.
(I)求數(shù)列{an}的通項公式;
(II)是否存在m,k∈N*,使am+am+4=ak+2?說明理由;
(III)若數(shù)列{bn}滿足b1=-1,bn+1-bn=an,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是單調(diào)遞增的等差數(shù)列,Sn為其前n項和,且滿足4S3=S6,a2+2是a1,a13的等比中項.
(I)求數(shù)列{an}的通項公式;
(II)是否存在m,k∈N*,使am+am+4=ak+2?說明理由;
(Ⅲ)若數(shù)列{bn}滿足bn=215-an,求數(shù)列{bn}的前n項積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省威海市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

設{an}是單調(diào)遞增的等差數(shù)列,Sn為其前n項和,且滿足4S3=S6,a2+2是a1,a13的等比中項.
(I)求數(shù)列{an}的通項公式;
(II)是否存在m,k∈N*,使am+am+4=ak+2?說明理由;
(III)若數(shù)列{bn}滿足b1=-1,bn+1-bn=an,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省威海市高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

設{an}是單調(diào)遞增的等差數(shù)列,Sn為其前n項和,且滿足4S3=S6,a2+2是a1,a13的等比中項.
(I)求數(shù)列{an}的通項公式;
(II)是否存在m,k∈N*,使am+am+4=ak+2?說明理由;
(III)若數(shù)列{bn}滿足b1=-1,bn+1-bn=an,求數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案