過橢圓的左焦點(diǎn)軸的垂線交橢圓于點(diǎn),為右焦點(diǎn),若,則橢圓的離心率為__________________ .
解:由題意知點(diǎn)P的坐標(biāo)為(-c, )或(-c,-),
∵∠F1PF2=60°,∴  = ,即2ac= b2= (a2-c2).
e2+2e- =0,∴e=  或e=- (舍去).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的離心率,則的值為 (       ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線與橢圓有相同的焦點(diǎn),直線的一條漸近線,則雙曲線的方程是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在平面直角坐標(biāo)系內(nèi)已知兩點(diǎn)A(-1,0)、B(1,0),若將動(dòng)點(diǎn)P(x,y)的橫坐標(biāo)保持不變,縱坐標(biāo)擴(kuò)大到原來的倍后得到點(diǎn)Q(x,y),且滿足·="1."
(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)過點(diǎn)B作斜率為-的直線L交曲線C于M、N兩點(diǎn),且++=,試求△MNH的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)設(shè)橢圓的離心率右焦點(diǎn)到直線的距離,為坐標(biāo)原點(diǎn)。

(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)作兩條互相垂直的射線,與橢圓分別交于兩點(diǎn),證明點(diǎn)到直線的距離為定值,并求弦長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)分別為橢圓的左、右頂點(diǎn),若在橢圓上存在異于的點(diǎn),使得,其中為坐標(biāo)原點(diǎn),則橢圓的離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的離心率為,點(diǎn)上兩點(diǎn),斜率為的直線與橢圓交于點(diǎn),在直線兩側(cè)).

(I)求四邊形面積的最大值;
(II)設(shè)直線的斜率為,試判斷是否為定值.若是,求出這個(gè)定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的長(zhǎng)軸兩端點(diǎn)為,若橢圓上存在點(diǎn),使得,求橢圓的離心率的取值范圍____________;
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案