【題目】某創(chuàng)新團(tuán)隊(duì)擬開發(fā)一種新產(chǎn)品,根據(jù)市場調(diào)查估計(jì)能獲得10萬元到1000萬元的收益,先準(zhǔn)備制定一個(gè)獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬元)隨收益(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金不超過收益的20%

1)若建立函數(shù)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語言表示該團(tuán)隊(duì)對獎(jiǎng)勵(lì)函數(shù)模型的基本要求,并分析是否符合團(tuán)隊(duì)要求的獎(jiǎng)勵(lì)函數(shù)模型,并說明原因;

2)若該團(tuán)隊(duì)采用模型函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)的值.

【答案】1)不符合,見解析;(2328

【解析】

1)根據(jù)條件得出fx)的三個(gè)條件,并判斷y2是否滿足3個(gè)條件;

2)根據(jù)(1)的三個(gè)條件列不等式即可確定a的范圍,從而可求滿足條件的最小的正整數(shù)a的值.

1)設(shè)函數(shù)模型為,根據(jù)團(tuán)隊(duì)對函數(shù)模型的基本要求,函數(shù)滿足:

當(dāng)時(shí),①在定義域上是增函數(shù);②恒成立;

恒成立.

對于函數(shù),當(dāng)時(shí),是增函數(shù);

,所以恒成立;

時(shí),,即不恒成立.

因此,該函數(shù)模型不符合團(tuán)隊(duì)要求.

2)對于函數(shù)模型,

當(dāng)時(shí)遞增.

當(dāng)時(shí),要使恒成立,即,

所以;

要使恒成立,即恒成立,

得出

綜上所述,

所以滿足條件的最小正整數(shù)的值為328

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的偶函數(shù),滿足,當(dāng)時(shí),,若,,則,,的大小關(guān)系為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次電影展,有14部參賽影片,組委會(huì)分兩天在某一影院播映這14部電影,每天7部,其中有24D電影要求不在同一天放映,下列不能作為排片方案數(shù)的計(jì)算式的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:Cx=若不建隔熱層,每年能源消耗費(fèi)用為8萬元。設(shè)fx)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。

)求k的值及f(x)的表達(dá)式。

)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的左、右焦點(diǎn)分別為,離心率為,點(diǎn)在橢圓C上,且,F1MF2的面積為.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)已知直線l與橢圓C交于A,B兩點(diǎn),,若直線l始終與圓相切,求半徑r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)求函數(shù)的極值;

(2)問:是否存在實(shí)數(shù),使得有兩個(gè)相異零點(diǎn)?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)又本垂直于軸,與橢圓交于兩點(diǎn),點(diǎn)在直線上,.

1)求點(diǎn)的軌跡的方程;

2)直線與橢圓相交于,與曲線相切于點(diǎn),為坐標(biāo)原點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線上的點(diǎn)到焦點(diǎn)的距離為2.

1)求拋物線的方程;

2)如圖,點(diǎn)是拋物線上異于原點(diǎn)的點(diǎn),拋物線在點(diǎn)處的切線與軸相交于點(diǎn),直線與拋物線相交于兩點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識技藝過人,這里的“六藝”其實(shí)源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚(yáng)中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案