已知矩陣M=
10
0-1
,N=
12
0-3
,求直線y=2x+1在矩陣MN的作用下變換所得到的直線方程.
分析:MN=
10
0-1
12
0-3
=
12
03
,設(shè)y=2x+1上一點(diǎn)(x0,y0)在MN作用下變?yōu)椋▁′,y′),則
12
03
x0
y0
=
x
y
,由此得到
x0=x-
2
3
y
y0=
1
3
y
,再由y0=2x0+1,得到6x′-5y′+3=0,所以變換后的直線方程是6x-5y+3=0.
解答:解:∵M(jìn)N=
10
0-1
12
0-3
=
12
03

設(shè)y=2x+1上一點(diǎn)(x0,y0)在MN作用下變?yōu)椋▁′,y′),
12
03
x0
y0
=
x
y

x0+2y0
3y0
=
x
y
,
x=x0+2y0
y=3y0
,∴
x0=x-
2
3
y
y0=
1
3
y
,
∵y0=2x0+1,代入得
1
3
y=2(x-
2
3
y)+1
,
化簡,得2x-
5
3
y+1=0
,
即6x′-5y′+3=0,
∴變換后的直線方程是:6x-5y+3=0.
點(diǎn)評(píng):本題考查二階矩陣的變換,解題時(shí)要認(rèn)真審題,注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選做題本題包括A,B,C,D四小題,請(qǐng)選定其中 兩題 作答,每小題10分,共計(jì)20分,
解答時(shí)應(yīng)寫出文字說明,證明過程或演算步驟.
A選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大小.
B選修4-2:矩陣與變換
已知二階矩陣A=
ab
cd
,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為α1=
1
-1
,屬于特征值λ2=4的一個(gè)特征向量為α2=
3
2
.求矩陣A.
C選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=2
2
.點(diǎn)
P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
D選修4-5:不等式選講
若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣M=
1
0
0
-1
,N=
1
0
2
-3
,求直線y=2x+1在矩陣MN對(duì)應(yīng)變換的作用下所得到的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-2:矩陣與變換已知矩陣M=
10
0-1
,N=
12
34

①求二階矩陣X,使MX=N;
②求矩陣X的特征值以及其中一個(gè)特征值相應(yīng)的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省揚(yáng)州市高三第二次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

選做題本題包括A,B,C,D四小題,請(qǐng)選定其中 兩題 作答,每小題10分,共計(jì)20分,
解答時(shí)應(yīng)寫出文字說明,證明過程或演算步驟.
A選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大。
B選修4-2:矩陣與變換
已知二階矩陣A=,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為,屬于特征值λ2=4的一個(gè)特征向量為.求矩陣A.
C選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.點(diǎn)
P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
D選修4-5:不等式選講
若正數(shù)a,b,c滿足a+b+c=1,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案