【題目】某商場擬對某商品進行促銷,現(xiàn)有兩種方案供選擇,每種促銷方案都需分兩個月實施,且每種方案中第一個月與第二個月的銷售相互獨立.根據(jù)以往促銷的統(tǒng)計數(shù)據(jù),若實施方案1,預(yù)計第一個月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4,第二個月的銷量是第一個月的1.4倍和1.6倍的概率都是0.5;若實施方案2,預(yù)計第一個月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個月的銷量是第一個月的1.2倍和1.6倍的概率分別是0.6和0.4.令表示實施方案的第二個月的銷量是促銷前銷量的倍數(shù).

(Ⅰ)求, 的分布列;

(Ⅱ)不管實施哪種方案, 與第二個月的利潤之間的關(guān)系如下表,試比較哪種方案第二個月的利潤更大.

【答案】(Ⅰ)見解析;(Ⅱ)實施方案1.

【解析】試題分析:(I)利用兩個月銷量的倍數(shù)兩兩相乘,求得, 的所有取值,再利用相互獨立事件概率計算公式求得每個取值對應(yīng)的概率的值,由此求得分布列.(II)根據(jù)(I)求得的分布列,求得每個月利潤的值和對應(yīng)的概率,由此求得兩個方案利潤的分布列,進而求得期望值,比較兩個期望值即可得出利潤更大的方案.

試題解析:

(Ⅰ)依題意, 的所有取值為1.68,1.92,2.1,2.4,

因為 , ,

, .

所以的分布列為

依題意, 的所有取值為1.68,1.8,2.24,2.4,

因為 ,

.

所以的分布列為

(Ⅱ)令表示方案所帶來的利潤,則

所以 ,

.

因為,

所以實施方案1,第二個月的利潤更大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點A(1,0),D(﹣1,0),點B,C在單位圓O上,且∠BOC=

(1)若點B( , ),求cos∠AOC的值;
(2)設(shè)∠AOB=x(0<x< ),四邊形ABCD的周長為y,將y表示成x的函數(shù),并求出y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式a|x|>x2 對任意x∈[﹣1,1]都成立,則實數(shù)a的取值范圍是(
A.( ,1)∪(1,+∞)
B.(0, )∪(1,+∞)??
C.( ,1)∪(1,2)
D.(0, )∪(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△PAD與正方形ABCD共用一邊AD,平面PAD⊥平面ABCD,其中PA=PD,AB=2,點E是棱PA的中點.

(1)求證:PC∥平面BDE;
(2)若直線PA與平面ABCD所成角為60°,求點A到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, , , 分別為棱的中點.

(1)在平面內(nèi)過點平面于點,并寫出作圖步驟,但不要求證明.

(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是空間兩條直線, 是空間兩個平面,則下列命題中不正確的是( )

A. 當(dāng)時,“”是“”的充要條件

B. 當(dāng)時,“”是“”的充分不必要條件

C. 當(dāng)時,“”是“”的必要不充分條件

D. 當(dāng)時,“”是“”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinx,﹣1), =(2cosx,1).
(1)若 ,求tanx的值;
(2)若 ,又x∈[π,2π],求sinx+cosx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,B1C與對角面DD1B1B所成角的大小是(
A.15°
B.30°
C.45°
D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用斜二測畫法畫出下列水平放置的正五邊形和四邊形的直觀圖.

查看答案和解析>>

同步練習(xí)冊答案