本小題滿分12分)
今有一長2米寬1米的矩形鐵皮,如圖,在四個角上分別截去一個邊長為x米的正方形后,沿虛線折起可做成一個無蓋的長方體形水箱(接口連接問題不考慮).
(Ⅰ)求水箱容積的表達(dá)式,并指出函數(shù)的定義域;
(Ⅱ)若要使水箱容積不大于立方米的同時,又使得底面積最大,求x的值.
(1) {x|0<x<} (2)
【解析】
試題分析:解:(Ⅰ)由已知該長方體形水箱高為x米,底面矩形長為(2-2x)米,寬(1-2x)米.
∴該水箱容積為
f(x)=(2-2x)(1-2x)x=4x3-6x2+2x. ………………………4分
其中正數(shù)x滿足∴0<x<.
∴所求函數(shù)f(x)定義域為{x|0<x<}.………………………6分
(Ⅱ)由f(x)≤4x3,得x ≤ 0或x ≥,
∵定義域為{x|0<x<},∴ ≤ x<.………………………8分
此時的底面積為S(x)=(2-2x)(1-2x)=4x2-6x+2
(x∈[,)).由S(x)=4(x-)2-,………………………10分
可知S(x)在[ ,)上是單調(diào)減函數(shù),
∴x=.即滿足條件的x是.………………………12分
考點:本試題考查了函數(shù)的實際運用。
點評:對于實際運用題,要準(zhǔn)確的審清題意,并能抽象出函數(shù)關(guān)系式,然后結(jié)合分段函數(shù)的性質(zhì)來分析定義域和單調(diào)性,以及求解最值的問題。注意實際問題中,變量的范圍確定,要符合實際意義,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com