【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)求在區(qū)間上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情況如上:

所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.

(Ⅱ)當(dāng),即時(shí),函數(shù)上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時(shí),

由(Ⅰ)知上單調(diào)遞減,在上單調(diào)遞增,

所以在區(qū)間上的最小值為.

當(dāng),即時(shí),函數(shù)上單調(diào)遞減,

所以在區(qū)間上的最小值為.

綜上,當(dāng)時(shí),的最小值為;

當(dāng)時(shí),的最小值為;

當(dāng)時(shí),的最小值為.

型】解答
結(jié)束】
19

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).

1)求的方程;

2)若點(diǎn)上,過(guò)的兩弦,若,求證: 直線過(guò)定點(diǎn).

【答案】1;(2)證明見解析.

【解析】試題分析:(1)當(dāng)焦點(diǎn)在軸時(shí),設(shè)的方程為,當(dāng)焦點(diǎn)在軸時(shí),設(shè)的方程為,分別代入點(diǎn),求得的值,即可得到拋物線的方程;(2)因?yàn)辄c(diǎn)上,所以曲線

的方程為,設(shè)點(diǎn),用直線與曲線方程聯(lián)立,利用韋達(dá)定理整理得到,即可得到,判定直線過(guò)定點(diǎn).

試題解析:(1)當(dāng)焦點(diǎn)在軸時(shí),設(shè)的方程為,代人點(diǎn),即.當(dāng)焦點(diǎn)在軸時(shí),設(shè)的方程為,代人點(diǎn),即

綜上可知: 的方程為.

2)因?yàn)辄c(diǎn)上,所以曲線的方程為.

設(shè)點(diǎn),

直線,顯然存在,聯(lián)立方程有: .,

.

直線直線過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,a1= ,an+1= an , n∈N*
(1)求證:數(shù)列{ }為等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE= ,平面ABCD⊥平面BCEG,BC=CD=CE=2BG=2.

(1)證明:AG∥平面BDE;
(2)求二面角E﹣BD﹣G的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)y(萬(wàn)元)有如下統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

若由資料知,y對(duì)x呈線性相關(guān)關(guān)系.

(1) 請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(2) 估計(jì)使用年限為10年時(shí),試求維修費(fèi)用約是多少?(精確到兩位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為做好2022年北京冬季奧運(yùn)會(huì)的宣傳工作,組委會(huì)計(jì)劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機(jī)調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合計(jì)

男大學(xué)生

610

女大學(xué)生

90

合計(jì)

800

(1)根據(jù)題意完成表格;

(2)是否有的把握認(rèn)為愿意做志愿者工作與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線y=焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),點(diǎn)C在直線y=-1上,若△ABC為正三角形,則其邊長(zhǎng)為

A. 11 B. 13 C. 14 D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐S-ABCD的底面ABCD為直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD為正三角形.

(Ⅰ)點(diǎn)M為棱AB上一點(diǎn),若BC∥平面SDM,AM=λAB,求實(shí)數(shù)λ的值;

(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.

【答案】(Ⅰ)(Ⅱ)

【解析】

由線面平行的性質(zhì)定理可得據(jù)此可知四邊形BCDM為平行四邊形,據(jù)此可得.

由幾何關(guān)系,在平面內(nèi)過(guò)點(diǎn)直線于點(diǎn),以點(diǎn)E為坐標(biāo)原點(diǎn),EA方向?yàn)?/span>X軸,EC方向?yàn)?/span>Y軸,ES方向?yàn)?/span>Z軸建立空間坐標(biāo)系,據(jù)此可得平面的一個(gè)法向量,平面的一個(gè)法向量,據(jù)此計(jì)算可得二面角余弦值為.

Ⅰ)因?yàn)?/span>平面SDM, 平面ABCD,平面SDM 平面ABCD=DM,所以,

因?yàn)?/span>,所以四邊形BCDM為平行四邊形,又,所以MAB的中點(diǎn).

因?yàn)?/span> .

Ⅱ)因?yàn)?/span> , ,所以平面,又因?yàn)?/span>平面

所以平面平面,平面平面

在平面內(nèi)過(guò)點(diǎn)直線于點(diǎn),則平面,

中,因?yàn)?/span>,所以,

又由題知,所以所以,

以下建系求解.以點(diǎn)E為坐標(biāo)原點(diǎn),EA方向?yàn)?/span>X軸,EC方向?yàn)?/span>Y軸,ES方向?yàn)?/span>Z軸建立如圖所示空間坐標(biāo)系,

,,,

,,

設(shè)平面的法向量,則,所,

為平面的一個(gè)法向量,

同理得為平面的一個(gè)法向量,

,因?yàn)槎娼?/span>為鈍角.

所以二面角余弦值為.

【點(diǎn)睛】

本題考查了立體幾何中的判斷定理和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過(guò)嚴(yán)密推理,明確角的構(gòu)成.同時(shí)對(duì)于立體幾何中角的計(jì)算問題,往往可以利用空間向量法,通過(guò)求解平面的法向量,利用向量的夾角公式求解.

型】解答
結(jié)束】
19

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元.

(Ⅰ)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關(guān)系式;

(Ⅱ)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在(,]n=1,2,3,4,5)時(shí),日平均派送量為50+2n單.若將頻率視為概率,回答下列問題:

①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為X(單位:元),試分別求出甲、乙兩種方案的日薪X的分布列,數(shù)學(xué)期望及方差;

②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說(shuō)明你的理由。

(參考數(shù)據(jù):0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某路段最高限速60km/h,電子監(jiān)控測(cè)得連續(xù)6輛汽車的速度用莖葉圖表示如下(單位:km/h).若從中任取2輛,則恰好有1輛汽車超速的概率為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的單調(diào)性;

(2)若,當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案