17.執(zhí)行如圖程序框圖,輸入n=4,A=4,x=2,輸出結(jié)果A等于49.

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量A的值,模擬程序的運(yùn)行過(guò)程,可得答案.

解答 解:模擬執(zhí)行程序,可得
n=4,A=4,x=2,i=3
滿足條件i>0,執(zhí)行循環(huán)體,A=11,i=2
滿足條件i>0,執(zhí)行循環(huán)體,A=24,i=1
滿足條件i>0,執(zhí)行循環(huán)體,A=49,i=0
不滿足條件i>0,退出循環(huán),輸出A的值為49.
故答案為:49.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求下列各式的值:
(1)sin($\frac{π}{4}$+arcsin$\frac{1}{2}$);
(2)sin($\frac{π}{6}$-arcsin$\frac{3}{5}$);
(3)sin(2arcsin$\frac{4}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知F1、F2分別為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左、右焦點(diǎn),由F1、F2分別作直線l:y=$\frac{2b}{\sqrt{3}a}$(x-1)的垂線段,垂足為M、N,若|MN|=$\sqrt{3}$c,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知$\left\{\begin{array}{l}2x-y≥0\\ x-y+1≤0\end{array}\right.$,則${2^{{x^2}+{y^2}}}$的最小值是32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=2sin(ωx+φ)(ω<0,-π<φ<π)的部分圖象如圖所示.
(1)求f(x)的表達(dá)式;
(2)求函數(shù)f(x)在區(qū)間$[\frac{3π}{2},2π]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,如果輸入的N的值是10,則輸出的S的值是$2\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=x2lnx+ax(a∈R)
(Ⅰ)求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線在y軸上的截距;
(Ⅱ)對(duì)于任意的x0>0,記函數(shù)f(x)的圖象在點(diǎn)(x0,f(x0))處的切線在y軸上的截距為g(x0),求g(x0)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.執(zhí)行如圖所示的程序框圖,若輸入的n值為5,則輸出的S值是11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)E,F(xiàn)分別是邊長(zhǎng)為1的正方形ABCD的邊BC,CD上的點(diǎn),∠EAF=45°,則$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值等于( 。
A.$\sqrt{2}$B.1C.2($\sqrt{2}$-1)D.$\sqrt{2}$-1

查看答案和解析>>

同步練習(xí)冊(cè)答案