隨機(jī)向邊長為5,5,6的三角形中投一點(diǎn)P,則點(diǎn)P到三個頂點(diǎn)的距離都不小于1的概率是
 
考點(diǎn):幾何概型
專題:計算題,作圖題,概率與統(tǒng)計
分析:本題符合幾何概型,由題意作圖,求面積比即可.
解答: 解:本題符合幾何概型,由題意作圖如下,

則點(diǎn)P應(yīng)落在黑色陰影部分,
S=
1
2
×6×
52-32
=12,
三個小扇形可合并成一個半圓,故其面積S=
1
2
π,
故點(diǎn)P到三個頂點(diǎn)的距離都不小于1的概率P=
12-
π
2
12
=
24-π
24

故答案為:
24-π
24
點(diǎn)評:本題考查了幾何概型概率的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x-3,則f(0)=
 
..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)一點(diǎn)P及△ABC,若
PA
+
PB
+
PC
=
AB
,則點(diǎn)P與△ABC的位置關(guān)系是(  )
A、點(diǎn)P在線段AB上
B、點(diǎn)P在線段BC上
C、點(diǎn)P在線段AC上
D、點(diǎn)p在△ABC外部

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn),若PA=PD.
(1)求證:平面PQB⊥平面PAD;
(2)若平面PAD⊥平面ABCD.求證:PQ⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+b(0≤x≤1),則a+2b>0是f(x)>0在[0,1]上恒成立的
 
條件(填充分不必要條件,必要不充分條件,充要,既不充分也不必要)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n表示不同直線,α,β表示不同平面,則下列命題中正確的是( 。
A、若m∥α,m∥n,則n∥α
B、若m?α,n?β,n∥α,則α∥β
C、若α∥β,m∥α,m∥n,則n∥β
D、若α∥β,m∥α,n∥m,n?β,則n∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一正四棱錐S-ABCD的棱長都等于a,求側(cè)面與底面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,記ρ為極徑,θ為極角,直線2ρcosθ=1被圓ρ=2cosθ所截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α外不共線的三點(diǎn)A、B、C,則α的距離都相等,則錯誤的結(jié)論是
 

①平面ABC必平行于α;
②平面ABC必不垂直于α;
③存在△ABC的一條中位線平行于α或在α

查看答案和解析>>

同步練習(xí)冊答案