已知是可導(dǎo)函數(shù),“”是“為函數(shù)極值點(diǎn)”的(     )

A.充分不必要條件                        B.必要不充分條件

C.充要條件                             D.既不充分也不必要條件

 

【答案】

B

【解析】

試題分析:因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013082613301266323927/SYS201308261330359322767378_DA.files/image001.png">是可導(dǎo)函數(shù),所以,“”是“為函數(shù)極值點(diǎn)”的必要不充分條件,選B。

考點(diǎn):函數(shù)存在極值的條件。

點(diǎn)評(píng):簡(jiǎn)單題,是可導(dǎo)函數(shù),“”是“為函數(shù)極值點(diǎn)”的必要不充分條件。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①函數(shù)f(x)=x+
2
x
(x∈(0,1))
的最小值是2
2
;
②對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x)且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí),f′(x)>g′(x);
③如果y=f(x)是可導(dǎo)函數(shù),則f′(x0)=0是函數(shù)y=f(x)在x=x0處取到極值的必要不充分條件;
④已知存在實(shí)數(shù)x使得不等式|x+1|-|x-1|≤a成立,則實(shí)數(shù)a的取值范圍是a≥2.
其中正確的命題是
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是可導(dǎo)函數(shù),且滿足
lim
x→0
f(1)-f(1-x)
x
=-1
,則在曲線y=f(x)上的點(diǎn)A(1,f(1))的切線斜率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題甲:f′(x0)=0,命題乙:點(diǎn)x0是可導(dǎo)函數(shù)f(x)的極值點(diǎn),則甲是乙的
必要不充分
必要不充分
條件.(填充分不必要,必要不充分或充要)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函f(x)是可導(dǎo)函數(shù),且f′(a)=1,則
lim
x→a
f(x)-f(a)
2(x-a)
等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案