三棱錐O-ABC中,OA,OB,OC兩兩垂直,且OA=OB=2OC=2a,則三棱錐O-ABC外接球的表面積為( 。
分析:三棱錐O-ABC的三條側(cè)棱OA、OB、OC兩兩互相垂直,它的外接球就是它擴(kuò)展為長方體的外接球,求出長方體的對角線的長,就是球的直徑,然后求球的表面積.
解答:解:三棱錐O-ABC的三條側(cè)棱OA,OB,OC兩兩垂直,
它的外接球就是它擴(kuò)展為長方體的外接球,求出長方體的對角線的長:
(2a)2+(2a)2+a2
=3a,
所以球的直徑是3a,半徑長R=
3
2
a
球的表面積S=4πR2=9πa2
故選B.
點(diǎn)評:本題考查球的表面積,幾何體的外接球,考查空間想象能力,計(jì)算能力,是基礎(chǔ)題.將三棱錐擴(kuò)展為長方體是本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、如圖,在三棱錐O-ABC中,三條棱OA,OB,OC兩兩垂直,且OA>OB>OC,分別經(jīng)過三條棱OA,OB,OC作一個(gè)截面平分三棱錐的體積,截面面積依次為S1,S2,S3,則S1,S2,S3的大小關(guān)系為
S3<S2<S1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△OAB中,∠O=90°,則 cos2A+cos2B=1.根據(jù)類比推理的方法,在三棱錐O-ABC中,OA⊥OB,OB⊥OC,OC⊥OA,α、β、γ 分別是三個(gè)側(cè)面與底面所成的二面角,則
cos2α+cos2β+cos2γ=1
cos2α+cos2β+cos2γ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐O-ABC中,三條棱OA,OB,OC兩兩互相垂直,且OA=OB=OC,M是AB邊的中點(diǎn),則OM與平面ABC所成角的正切值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃岡模擬)在三棱錐O-ABC中,三條棱OA、OB、OC兩兩相互垂直,且OA>OB>OC,分別過OA、OB、OC作一個(gè)截面平分三棱錐的體積,截面面積依次為S1,S2,S3,則S1,S2,S3中的最小值是
S3
S3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面幾何里,已知直角三角形ABC中,角C為90°,AC=b,BC=a,運(yùn)用類比方法探求空間中三棱錐的有關(guān)結(jié)論:
有三角形的勾股定理,給出空間中三棱錐的有關(guān)結(jié)論:
在三棱錐O-ABC中,若三個(gè)側(cè)面兩兩垂直,則
S
2
△OAB
+
S
2
△OAC
+
S
2
△OBC
=
S
2
△ABC
在三棱錐O-ABC中,若三個(gè)側(cè)面兩兩垂直,則
S
2
△OAB
+
S
2
△OAC
+
S
2
△OBC
=
S
2
△ABC

若三角形ABC的外接圓的半徑為r=
a2+b2
2
,給出空間中三棱錐的有關(guān)結(jié)論:
在三棱錐O-ABC中,若三個(gè)側(cè)面兩兩垂直,且三條側(cè)棱長分別為a,b,c,則其外接球的半徑為r=
a2+b2+c2
2
在三棱錐O-ABC中,若三個(gè)側(cè)面兩兩垂直,且三條側(cè)棱長分別為a,b,c,則其外接球的半徑為r=
a2+b2+c2
2

查看答案和解析>>

同步練習(xí)冊答案