如圖,在四邊形ABCD中,已知AD⊥CD,AD=
2
,BC=2,∠BDA=60°∠BCD=135°,求AB的長(zhǎng).
考點(diǎn):正弦定理,余弦定理
專題:解三角形
分析:在三角形BCD中,利用正弦定理列出關(guān)系式,把BC,sin∠BDC與sin∠BCD代入求出BD的長(zhǎng),在三角形ABD中,利用余弦定理求出AB的長(zhǎng)即可.
解答: 解:∵△BCD中,AD⊥CD,AD=
2
,BC=2,∠BDA=60°,∠BCD=135°,
∴∠BDC=30°,
由正弦定理得:
BC
sin∠BDC
=
BD
sin∠BCD
,即
2
sin30°
=
BD
sin135°

解得:BD=2
2
,
在△ABD中,由余弦定理得:AB2=AD2+BD2-2AD•BD•cos∠ADB=2+8-4=6,
則AB=
6
點(diǎn)評(píng):此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面內(nèi)與兩定點(diǎn)A1(-a,0),A2(a,0)(a>0)連線的斜率之積等于常數(shù)m(m<0)的點(diǎn)的軌跡,連同A1,A2兩點(diǎn)所成的曲線為C.
(Ⅰ)求曲線C的方程,并討論C的形狀;
(Ⅱ)設(shè)a=
3
,m=-
2
3
,對(duì)應(yīng)的曲線是C1,已知?jiǎng)又本l與橢圓C1交于P(x1,y1)、Q(x2,y2)兩不同點(diǎn),且S△OPQ=
6
2
,其中O為坐標(biāo)原點(diǎn),探究x12+x22是否為定值,寫出解答過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將命題“正偶數(shù)不是質(zhì)數(shù)”改寫成“若則”的形式,并寫出它的逆命題、否命題、逆否命題,并判斷它們的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=0,an+1=an+n,則a2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知g(x)=1-x2,f[g(x)]=
1-x2
x2
(x≠1),求f(
1
2
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a6-2a3=2,a5-2a2=1,則等比數(shù)列{an}的公比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanθ=2,則
sin(
π
2
+θ)-cos(π-θ)
sin(
π
2
+θ)-sin(π-θ)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2
1+x2
,那么f(1)+f(2)+…+f(2009)+f(
1
2
)+f(
1
3
)+…+f(
1
2009
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程:
2x-4
-
x+5
=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案