1.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=2x-6,則f(f(2))=( 。
A.-$\frac{23}{4}$B.$\frac{23}{4}$C.-2D.2

分析 當(dāng)x<0時,f(x)=-$\frac{1}{{2}^{x}}$+6,先求出f(2)=22-6=-2,從而f(f(2))=f(-2),由此能求出結(jié)果.

解答 解:∵f(x)是定義在R上的奇函數(shù),
當(dāng)x>0時,f(x)=2x-6,
∴當(dāng)x<0時,f(x)=-$\frac{1}{{2}^{x}}$+6,
∴f(2)=22-6=-2,
f(f(2))=f(-2)=-$\frac{1}{{2}^{-2}}$+6=2.
故選:D.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列四個類比中,正確得個數(shù)為( 。
(1)若一個偶函數(shù)在R上可導(dǎo),則該函數(shù)的導(dǎo)函數(shù)為奇函數(shù),將此結(jié)論類比到奇函數(shù)的結(jié)論為:若一個奇函數(shù)在R上可導(dǎo),則該函數(shù)的導(dǎo)函數(shù)為偶函數(shù).
(2)若雙曲線的焦距是實軸長的2倍,則此雙曲線的離心率為2.將此結(jié)論類比到橢圓的結(jié)論為:若橢圓的焦距是長軸長的一半,則此橢圓的離心率為$\frac{1}{2}$.
(3)若一個等差數(shù)列的前3項和為1,則該數(shù)列的第2項為$\frac{1}{3}$.將此結(jié)論類比到等比數(shù)列的結(jié)論為:若一個等比數(shù)列的前3項積為1,則該數(shù)列的第2項為1.
(4)在平面上,若兩個正三角形的邊長比為1:2,則它們的面積比為1:4,將此結(jié)論類比到空間中的結(jié)論為:在空間中,若兩個正四面體的棱長比為1:2,則它們的體積比為1:8.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.等差數(shù)列{an}中,已知a1=-1,S19=0,則使an>0的最小正整數(shù)n為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.?dāng)?shù)列{an}的各項均為正數(shù),且an+1=an+$\frac{2}{{a}_{n}}$-1(n∈N*),{an}的前n項和是Sn
(Ⅰ)若{an}是遞增數(shù)列,求a1的取值范圍;
(Ⅱ)若a1>2,且對任意n∈N*,都有Sn≥na1-$\frac{1}{3}$(n-1),證明:Sn<2n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知sinx-cosx=$\frac{1}{5}$,0≤x≤π,則sin(2x+$\frac{π}{4}$)的值為$\frac{17\sqrt{2}}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={-2,-1,1,2},B={-3,-1,0,2},則A∩B的元素的個數(shù)為( 。
A.2B.3C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,}&{x<0}\\{-\frac{1}{x},}&{x>0}\end{array}\right.$的圖象上存在不同的兩點A、B,使得曲線y=f(x)在這兩點處的切線重合,則點A的橫坐標(biāo)的取值范圍可能是(  )
A.(-$\frac{1}{2}$,0)B.(-1,-$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知不等式ax2-3x+6>4的解集為 {x|x<1或x>b}(b>1).
(1)求實數(shù)a,b的值;
(2)解不等式ax2-(ac+b)x+bc<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}滿足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n}{3}(n∈{N^*})$
(1)求an;
(2)設(shè)${b_n}=\frac{n}{a_n}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案