精英家教網 > 高中數學 > 題目詳情

【題目】已知等差數列{an}前5項和為50,a7=22,數列{bn}的前n項和為Sn , b1=1,bn+1=3Sn+1. (Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)若數列{cn}滿足 ,n∈N* , 求c1+c2+…+c2017的值.

【答案】解:(Ⅰ)設等差數列{an}的公差為d.

依題意得 ,

解得a1=4,d=3,

所以an=a1+(n﹣1)d=3n+1.

當n=1時,b2=3b1+1=4,

當n≥2時,bn+1=3Sn+1,bn=3Sn﹣1+1,

以上兩式相減得bn+1﹣bn=3bn,則bn+1=4bn,

又b2=4b1,所以bn+1=4bn,n∈N*

所以{bn}為首項為1,公比為4的等比數列,

所以

(Ⅱ)因為 ,n∈N*

當n≥2時, ,

以上兩式相減得 ,所以 ,n≥2.

當n=1時, ,所以c1=a2b1=7,不符合上式,

所以c1+c2+…+c2017=7+3(4+42+…+42016)=


【解析】(I)設等差數列{an}的公差為d,利用等差數列的通項公式及其前n項和公式即可首項和公差,即可求出數列{an}的通項公式,再根據數列的遞推公式可得所以{bn}為首項為1,公比為4的等比數列,即可求出數列{bn}的通項公式(II)根據數列的遞推公式先求出{cn}的通項公式,再分組求和.
【考點精析】解答此題的關鍵在于理解數列的前n項和的相關知識,掌握數列{an}的前n項和sn與通項an的關系,以及對數列的通項公式的理解,了解如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數 f(x)=2lnx+x2﹣ax. (Ⅰ)當a=5時,求f(x)的單調區(qū)間;
(Ⅱ)設A(x1 , y1),B(x2 , y2)是曲線y=f(x)圖象上的兩個相異的點,若直線AB的斜率k>1恒成立,求實數a的取值范圍;
(Ⅲ)設函數f(x)有兩個極值點x1 , x2 , x1<x2且x2>e,若f(x1)﹣f(x2)≥m恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,已知圓C1的參數方程為 為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線C2的極坐標方程為ρcosθ+2=0.
(1)求C1的極坐標方程與C2的直角坐標方程;
(2)若直線C3的極坐標方程為 ,設C3與C1的交點為M,N,P為C2上的一點,且△PMN的面積等于1,求P點的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若不等式ln(x+2)+a(x2+x)≥0對于任意的x∈[﹣1,+∞)恒成立,則實數a的取值范圍是(
A.[0,+∞)
B.[0,1]
C.[0,e]
D.[﹣1,0]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,已知點P(2,0),曲線C的參數方程為 (t為參數).以坐標原點為極點,x軸正半軸為極軸建立極坐標系. (Ⅰ)求曲線C的普通方程和極坐標方程;
(Ⅱ)過點P且傾斜角為 的直線l交曲線C于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線的中心在原點O,左焦點為F1 , 圓O過點F1 , 且與雙曲線的一個交點為P,若直線PF1的斜率為 ,則雙曲線的漸近線方程為(
A.y=±x
B.y=± x
C.y=± x
D.y=± x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的直角頂點A在y軸上,點B(1,0),D為斜邊BC的中點,且AD平行于x軸.
(1)求點C的軌跡方程;
(2)設點C的軌跡為曲線Γ,直線BC與Γ的另一個交點為E,以CE為直徑的圓交y軸于點M,N,記圓心為P,∠MPN=α,求α的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xlnx+ax+b在(1,f(1))處的切線為2x﹣2y﹣1=0.
(1)求f(x)的單調區(qū)間與最小值;
(2)求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 的最小正周期為4π,則( )
A.函數f(x)的圖象關于原點對稱
B.函數f(x)的圖象關于直線 對稱
C.函數f(x)圖象上的所有點向右平移 個單位長度后,所得的圖象關于原點對稱
D.函數f(x)在區(qū)間(0,π)上單調遞增

查看答案和解析>>

同步練習冊答案